Program Modules, Separate Compilation,

and Intermodule Optimisation

Ph.D. Thesis

Martin Elsman

Department of Computer Science
University of Copenhagen

Accepted by
the Faculty of Science
University of Copenhagen

January 1999

il

Copyright (©1998 Martin Elsman
All Rights Reserved

Supervisor
Mads Tofte, University of Copenhagen

Thesis Committee
Xavier Leroy, INRIA Rocquencourt
Greg Morrisett, Cornell University
Hanne Riis Nielson, Aahus University (Chair)

iii

Abstract

This thesis is about a framework for elaborating and interpreting module
language constructs at compile time in such a way that (1) arbitrary com-
pile time information about declared identifiers of a module may be prop-
agated to other modules and (2) no code is generated for module language
constructs. The framework for interpreting module language constructs is
called static interpretation. More information about referenced identifiers
than can be obtained from programmer provided interfaces is necessary for
analyses such as region inference. Further, many other analyses improve sig-
nificantly from availability of analysis specific information about referenced
identifiers. Static interpretation facilitates intermodule optimisation, yet,
it still supports a variant of separate compilation called cut-off incremental
recompilation.

The thesis is divided into three parts. The first part is about the static
properties of a small language called ModML, which features a small Core
language and the essential constructs of the Standard ML Modules language.
The second part develops the framework for static interpretation by showing
how ModML can be compiled into an explicitly typed intermediate language.
The third part describes the ML Kit with Regions compiler, which is based
on the techniques developed in part one and part two.

v

Contents

1 Introduction
1.1 Modularity and Abstraction
1.2 Separate Compilation
1.3 Implementation Transparency
1.4 Outline.

I A Module Language

2 The Language ModML

2.1 Identifiers and Syntactic Notation
2.2 Grammar for Type Expressions
2.3 Types and Type Functions
2.4 Elaboration of Type Expressions
2.5 Grammar for Core oo
2.6 Type Schemes and Signatures
2.7 Elaboration of Core
2.8 Grammar for Signature Expressions
2.9 Semantic Objects for Modules
2.10 Realisation o oo
2.11 Well-Formedness
2.12 Elaboration of Signature Expressions
2.13 Type Sharing
2.14 Grammar for Modules
2.15 Signature Instantiation and Functor Signature Instantiation

2.16 Enrichment and Signature Matching
2.17 Elaboration of Modules

vi

3 Reasoning about ModML

3.1 Realisation Closedness Properties
3.2 Type-Explication

4 Elaboration Dependence

4.1 Identifiers
4.2 Restriction
4.3 Strong Enrichment
4.4 Agreement
4.5 Core Dependence
4.6 Signature Dependence
4.7 Module Dependence
4.8 Refinement of Elaboration Dependence

5 From Opaque to Transparent Modules

5.1 Opacity Elimination
5.2 Abstraction
5.3 Preservation of Elaboration
54 Well-Formedness

5.5 Complete Elimination of Abstract Types

IT Compiling Program Components

6 Cut-Off Incremental Recompilation

6.1 Translation Environments
6.2 Translation Steps
6.3 Compilation Bases
6.4 Compilation

6.5 A Framework for Separate Compilation

6.6 Correctness of the Framework
6.7 Non-Determinism and Matching

7 The Language IntML

7.1 Syntaxo
7.2 Typing Rules
7.3 Dynamic Semantics
7.4 Type Soundness

CONTENTS

CONTENTS vii

7.5 Datatypes with More Value Constructors 142
8 Static Interpretation of Modules 145
8.1 Semantic Objects 146
82 Weakening Lo 147
8.3 Enmlargement oo 148
8.4 From ModML Core to IntML 148
8.5 Static Interpretation 150
8.6 Translatability 0000 152
8.7 Type Correctness i 163
8.8 ModML Type Soundness 174
8.9 Cut-Off Incremental Recompilation 176
III The ML Kit with Regions 179
9 A Guided Tour 181
9.1 Compiling with the Kit 182
9.2 Project Management 183
9.3 Parsing, Elaboration, and Opacity Elimination 185
9.4 Interpretation L Lo 188
9.5 The Repository oo 189
96 TheBack-End 191
10 Back-End Phases 193
10.1 Elimination of Polymorphic Equality 194
10.2 Intermediate Language Optimisation 196
10.3 Intermediate Language Type Checking 196
10.4 Region Inference 197
10.5 Region Representation Analyses 200
10.6 Code Generation 201
11 Conclusion 207
11.1 Contributionso 207
11.2 Implementation oL 208

11.3 Future Work 209

viii CONTENTS

Preface

This document is the revised version of the thesis. The thesis was submitted
July 20th, 1998 in partial fulfilment of the requirements for the degree of
Doctor of Philosophy, and recommended for acceptance by the thesis com-
mittee December 15th, 1998. The thesis is accepted by the Faculty of Science,
University of Copenhagen.

Acknowledgments

Foremost, I would like to thank my advisor Mads Tofte for giving me inspi-
ration and excellent supervision; much of the work put in the thesis is the
result of his teaching and guidance.

Thanks to the other members of the ML Kit team, that is, Peter Bertelsen,
Lars Birkedal, Niels Hallenberg, Tommy Hgjfeld Olesen, Peter Sestoft, and
Mads Tofte, for making work a fun thing to do.

Also thanks to the people in the TOPPS group at DIKU for numerous
fine discussions and for a great research atmosphere.

Special thanks go to Ulfar Erlingsson, Greg Morrisett, and the rest of
the people at Cornell University for making my stay there enjoyable and
educating.

I would also like to thank the thesis committee for providing comments
for the revised version of the thesis.

Finally, I would like to thank my family and my wife Sissel for their love
and support.

Martin Elsman

Berkeley
January 1999

X

CONTENTS

Chapter 1

Introduction

Modularity arose from the need to divide programs into program units for
separate compilation. Since then, the concept of modularity has become a
key element of modern software engineering [Car97]. The concept of modu-
larity now also covers name space management and abstraction mechanisms
such as parametric modules and abstract types. As software projects get
larger, programming language support for modularity becomes more and
more important for software development, for software maintenance, and for
software reuse.

On the other hand, only rarely does modularity come for free; when a pro-
gram unit is compiled, many programming environments impose a tradeoff
between what information for referenced identifiers is available to the com-
piler and what information is hidden for the programmer. Some information
may be useful to the programmer (e.g., simple type information,) other in-
formation may not (e.g., in what machine registers does a function expect
its arguments.) One reason for this tradeoff is that support for separate
compilation has been highly integrated in source languages.

In this thesis, we develop a general framework for separate compilation
that exists independently of the source language of the compiler and thus
does not impose any such tradeoff; we call the framework cut-off incremental
recompilation because program units managed by the framework are com-
piled incrementally (i.e., a program unit may be compiled only when the
program units on which it depends have been compiled) and because a pro-
gram unit need not necessarily be recompiled if another program unit, on
which it depends, is modified. The framework is based both on properties
of the source language and on each translation step in the compiler. An

2 CHAPTER 1. INTRODUCTION

important property of the framework is that it may coexist with a module
language; thus, the framework does not compromise software engineering
principles.

1.1 Modularity and Abstraction

Standard ML [MTHM97] is a statically typed language that supports a Core
language for programming in the small and a Modules language for pro-
gramming in the large. The Standard ML Modules language [MTHMO97|
is a well-studied language that builds upon the notions of structure, signa-
ture, and functor. Briefly, a structure is a sequence of declarations that may
include declarations of values, of types, and even of other structures. A sig-
nature specifies components of a structure and may thus be used to describe
a structure without actually supplying an implementation. A functor, then,
is a function mapping structures to structures.

The type system of Standard ML has a mechanism for generating a fresh
type (a name), which is then considered distinct from all other previously
declared types. This mechanism is used to support abstract datatypes and
what is called opaque signature constraints, which restrict the view of a
structure to that expressed by a signature. The name based static semantics
of Standard ML is difficult to reason about mainly because generated names
cannot be renamed once they are generated. In the first part of this thesis,
we present a static semantics for a subset of the language Standard ML.
We call the language ModML; like Standard ML, ModML is divided into a
Core language and a Modules language. The Modules language has most of
the essential features of Standard ML Modules whereas the Core language
is very small; it is there to account for the interaction between the Modules
language and the Core language.

The static semantics of ModML uses type abstraction, instead of a mech-
anism for generating fresh names, to model abstract datatypes and opaque
signature constraints. Type abstraction is also used in the module systems
by Harper and Lillibridge [HL94] and by Leroy [Ler94, Ler95]. Moreover,
Leroy demonstrates [Ler96] that a name based module system is equivalent
to a module system based on type abstraction. The type systems of these
languages differ from ModML, however, in that ModML is founded on mathe-
matical objects that are defined independently of the syntax of ModML. The
mathematical objects on which ModML is founded are much the same as

1.2. SEPARATE COMPILATION 3

the semantic objects on which Standard ML is founded. Independently from
the work we have done here, Russo [Rus98] has developed a static semantics
for a subset of Standard ML Modules, which is much similar to the static
semantics for ModML that we give here. In particular, Russo also formu-
lates type generativity by type abstraction. Moreover, he demonstrates that
his static semantics for Modules accepts the same set of language phrases
as a name based static semantics. Although Russo extends the features of
Standard ML Modules to support higher-order [MT94, Ler95, HL94] and
first-class modules [MP88, Jon95], he does not demonstrate type soundness
for his language.

An important property of Standard ML is type soundness; that is, well-
typed Standard ML programs do not go wrong. We demonstrate this prop-
erty for the language ModML via a type preserving interpretation of ModML
programs into an intermediate language called IntML for which a type sound-
ness result exists. The result is proof that the type abstraction mechanism of
ModML is sound. The interpretation of ModML into IntML is called static
interpretation, because all Modules language phrases are eliminated in the
process and because the interpretation does not depend on actual runtime
values.

1.2 Separate Compilation

In general, a separate compilation framework allows the programmer to di-
vide a program into several program units, which can then be compiled in
isolation. There are at least three aspects to the importance of separate com-
pilation. First, there is the modularity aspect as discussed in the preceding
section; a separate compilation framework provides the programmer with a
simple mechanism for organising programs into several program units. Then,
there is the compiler aspect; machines are often too small and compilers are
often not efficient enough to handle large bodies of code at once. Third, when
a software project has been compiled once, recompilation upon modification
of one or more program units must be fast.

Different separate compilation frameworks have different characteristics
with respect to what program units are recompiled upon modification of a
program unit. The simplest framework will recompile all program units; this
method is called big bang [ATW94|. Conventional recompilation and smart
recompilation, as presented below, assume that the programmer provides

4 CHAPTER 1. INTRODUCTION

an interface for each program unit in the program; such interfaces provide
specifications (e.g., types) for each declared identifier of the corresponding
program unit. The conventional framework for separate compilation, as im-
plemented by the UNIX program make, has the following characteristics:

A program unit must be recompiled whenever (1) its own imple-
mentation changes, or (2) an interface changes upon which the
program unit depends.

Modifying a comment or adding extra specifications to an interface cause
unnecessary recompilation. A more relaxed version of the preceding method
is called smart recompilation [Tic86]:

A program unit must be recompiled whenever (1) its own imple-
mentation changes, or (2) if it references an identifier whose spec-
ification has changed.

Frameworks for separate compilation that allow a program unit to be com-
piled based on interfaces, provided by the programmer, for those program
units on which the program unit depends, support cut-off (or true) separate
compilation; that is, such frameworks allow a program unit to be compiled
before the program units on which it depends have been compiled.

Shao and Appel describe in [SA93] how smartest recompilation may be
implemented:

A program unit never needs to be recompiled unless its own im-
plementation changes.

Smartest recompilation employs type inference to infer types for undeclared
identifiers of a program unit. Because some type inference is deferred till
link time, error reporting for some conflicts between declarations and uses
may also be delayed; such delays are in conflict with the rule that program-
mers generally prefer to receive error messages as early as possible. Consult
[ATW94] for a thorough discussion of several variations of the preceding
recompilation schemes.

1.3 Implementation Transparency

Cut-off incremental recompilation allows for arbitrary compile time informa-
tion about declared identifiers to propagate across program unit boundaries.

1.3. IMPLEMENTATION TRANSPARENCY)

The framework does not build on interfaces and thus lacks cut-off separate
compilation; it has the following characteristics:

A program unit must be recompiled if either (1) the program unit
has changed or (2) information about used identifiers of the pro-
gram unit has changed.

Moreover, the framework supports what we call implementation transparency;
that is, arbitrary information about a declared identifier may be propagated
across program unit boundaries. Such information may include intermediate
representations of in-line code and information about calling conventions for
function identifiers.

In Section 1.1, we described how static interpretation interprets the lan-
guage ModML into an intermediate language called IntML. The language
IntML is much simpler than ModML; in IntML programs, all types have
become known and all Modules language constructs have been eliminated
by flattening of structures and by specialisation of functors. This property
is nice, for at least two reasons. First, programmers do not always want to
compromise performance; without this property, programmers are sometimes
encouraged to in-line declarations from other modules manually, thereby vi-
olating software engineering principles. Second, and most importantly, the
specialisation of functors allows arbitrary information about declared iden-
tifiers to propagate across module boundaries at compile time; the speciali-
sation of functors was initiated by the same reason that the separate compi-
lation framework does not support cut-off separate compilation. Cut-off in-
cremental recompilation addresses the problem traditionally associated with
functor specialisation: that if a program is heavily functorised, then all code
generation is delayed till link time. With cut-off incremental recompilation,
only the functor applications for which the functor or compiler assumptions
have changed are recompiled—and if there is only one application of each of
those functors, this recompilation involves no more work than recompiling
each of the functor bodies once.

The specialisation of ModML functors is much similar to how Ada generic
packages and C++ templates are usually compiled. Besides from working
well with cut-off separate compilation, ModML functors can be fully type
checked at declaration time—as opposed to application time.

6 CHAPTER 1. INTRODUCTION

1.4 OQOutline

There are three parts. The first part is about the static properties of the
language ModML. In Chapter 2, we define the grammar for ModML and
we present the static semantics for the language. In Chapter 3, we study
some simple properties of ModML, many of which we use to demonstrate
other properties of the language in succeeding chapters. In Chapter 4, we
demonstrate that elaboration of a ModML program phrase depends only on
assumptions for those identifiers that occur free in the program phrase; this
property is important for separate compilation. In Chapter 5, we show that it
is possible to eliminate opaque signature constraints from a ModML program
by translating them into transparent ones such that if the original program
elaborates then so does the translated program.

The second part is about compilation of program components. In Chap-
ter 6, we present a framework for managing separate compilation, which we
call cut-off incremental recompilation. The framework allows for arbitrary
compile time information about declared identifiers being propagated across
program unit boundaries to those program units that use the declared iden-
tifiers. In Chapter 7, we present an explicitly typed language called IntML,
for which we demonstrate type soundness; that is, we show that, using oper-
ational semantics, well-typed IntML programs do not go wrong when evalu-
ated. In Chapter 8, we present an interpretation of ModML programs into
the language IntML. Further, we demonstrate that all well-typed ModML
programs may be interpreted into a well-typed IntML program.

The third part is about the ML Kit with Regions (or just the Kit). In
Chapter 9, we describe the overall structure of the Kit. We also show how the
techniques in part one and part two are used in the Kit to support separate
compilation and Standard ML Modules. In Chapter 10, we give an overview
of the back-end phases of the Kit and describe how these phases fit into
the framework for separate compilation that we presented in Chapter 6 and
Chapter 8.

Finally, we give a conclusion in Chapter 11.

Part 1

A Module Language

Chapter 2

The Language ModML

In this chapter, we present the language ModML. The language ModML fea-
tures a Core functional language for programming in the small and a Modules
language for programming in the large. ModML is essentially a small subset
of the programming language Standard ML (SML’97). However, ModML is
small because we want to study properties of the language with mathemati-
cal rigour. Still, the Core language of ModML has support for polymorphic
values, higher-order functions, and generative datatypes, and the Modules
language has support for signatures, structures, and functors. To simplify
the presentation, ModML does not support signature declarations.

The emphasis here is on the static properties of ModML. The static
semantics for ModML describes what programs should be accepted by a
compiler and what programs should not; the process of determining what
programs are acceptable and what programs are not is called elaboration.
Elaboration relates syntactic constructs to mathematical objects based on
some background that relates free identifiers of the syntactic construct to
mathematical objects. The major difference between the static semantics
of ModML and that of SML’97 is that ModML uses type abstraction to
model type generativity. This modification makes it easier to demonstrate
important properties of the language.

We do not give a dynamic semantics for ModML, directly. Instead, in
Chapter 8, we present an interpretation of ModML programs into a language
called IntML, for which a dynamic semantics is given in Chapter 7. There
is a type soundness result for the language IntML, thus, type soundness for
ModML can be established, indirectly.

In the section to follow, we introduce some syntactic notation. Then,

10 CHAPTER 2. THE LANGUAGE MODML

in Sections 2.2 through 2.4, we present a language of type expressions and
associated rules for elaboration. In Sections 2.5 through 2.7, we present the
Core language of ModML. Further, in Sections 2.8 through 2.12, we present
the grammar for expressing signatures together with rules for elaborating
signature constructs. Finally, in Sections 2.14 through 2.17, we present the
grammar and elaboration rules for writing modules in ModML.

2.1 Identifiers and Syntactic Notation

We divide identifiers into classes VId of value identifiers, TyCon of type con-
structors, TyVar of type variables, Strld of structure identifiers and Funld
of functor identifiers. We use wvid, tycon, strid and funid to range over value
identifiers, type constructors, structure identifiers and functor identifiers, re-
spectively. Further, we use tyvar and « to range over type variables.

For each class X of identifiers, ranged over by z, there is a class LongX,
ranged over by longz, defined as follows:

longz ::= x identifier
| stridy.---.strid,.x qualified identifier, n > 1

Similarly, there is a class X Seq, ranged over by zseq, describing sequences of
identifiers, defined as follows:

rseq = X singleton sequence
| empty sequence
| (zy,--,2,) sequence, n > 1

We refer to long identifiers of the form strid.longr as qualified identifiers.
Qualified identifiers provide a way to access sub-components of structures.

2.2 Grammar for Type Expressions

The grammar for type expressions (ty) is given in Figure 2.1. As a syntactic
convention, function type expressions associate to the right.

The grammar for type expressions allows for expressing function types,
types containing type variables, and types constructed from declared types.

2.3. TYPES AND TYPE FUNCTIONS 11

= ty, => tysy function
| tyvar type variable
| tyseq longtycon type construction

ty

Figure 2.1: Grammar for type expressions (ty).

2.3 Types and Type Functions

Elaboration of type expressions relates type expressions to so-called seman-
tic types. Semantic types stem from a mathematical universe of semantic
objects, which is given in Figure 2.2.

As for syntactic types, semantic types are divided into function types,
type variables, and constructed types. However, because two different type
constructors may stand for the same type, we use a notion of type name
to model distinction of types; a constructed type (71,---,7¢)t is equal to
another constructed type (r{,---,7)t' iff , =7/, i = 1.k, and t = t'. To
every type name is associated an arity k—the number of arguments the type
name takes. If ¢ is a type name with arity k, we write arity ¢ = k.

For any semantic object A, tynames A and tyvars A denote free type
names in A and free type variables in A, respectively.

A type function § = Aa®) .7 has arity k; it must be closed (i.e., tyvars(r) C
a®) and the bound variables must be distinct. Two type functions are con-
sidered equal if they differ only in their choice of bound variables (alpha-
conversion). If t has arity k then we write ¢ to mean Aa®).a®t (eta-
conversion), thus TyName C TypeFcn. We write the application of a type
function 0 to a vector 7*) of types as 7®0. If § = Aa®) .7 we set 7Kg =
7{7® /a®} (beta-conversion). We write 7{#(*) /t!)} for the result of substi-
tuting type functions #*) for type names t*) in 7 and we assume all beta-
conversions be carried out after substitution.

2.4 Elaboration of Type Expressions

The rules for elaborating type expressions allow inferences among sentences
of the form

Erty=r

12 CHAPTER 2. THE LANGUAGE MODML

t € TyName(k)
is € IdStatus = {v,c}
7 € Type = TyVar U FunType U ConsType
¥ e TypeF
o®) e TyVar
T— 7 € Type x Type
ConsType = Uy>o ConsType™®)
r®t e ConsType® = Type* x TyName®
0 or Aa® .1 € TypeFen = Uk>0 TyVar® x Type
ogorVo® r ¢ TypeScheme = U5 TyVar’C x Type
SE € StrEnv = Strld % Env
TE € TyEnv = TyCon fin, TypeFcn x ValEnv
VE € ValEnv = VId 2% TypeScheme x IdStatus
E € Env = StrEnv x TyEnv x ValEnv
T € TyNameSet = Fin(TyName)
Yor (T)E € Sig= TyNameSet x Env

Figure 2.2: Semantic objects for elaborating ModML Core.

where ty is a type expression, E is an environment, and 7 is a type. The
environment F provides assumptions for free long type constructors of ty.
Sentences of this form are read “ty elaborates to 7 in E.”. The rules for
elaborating type expressions are similar to the rules for elaborating type
expressions in SML’97.

Type expressions Erty=r

Ertyy=n EFty,=m

2.5. GRAMMAR FOR CORE 13

tyvar = «

(2.2)
EF tyvar = «
E(longtycon) = (%, VE)
tyseq = ty,---ty, EFty, =7, i=1.k (2.3)

E tyseq longtycon = (11, -+, 73)0®

Comment:

(2.3) The result of elaborating type expressions must be a type, thus, it
may be necessary to carry out beta-conversions on the result to fulfil this
requirement.

2.5 Grammar for Core

The grammar for the Core language of ModML is shown in Figure 2.3; it gives
productions for Core-level expressions (ezp) and for Core-level declarations
(dec). As a syntactic convention, function applications associate to the left.

erp = longuid value identifier

| fn longvid => ezp function

| exp, exp,y application

| let dec in ezrp end local declaration
dec ::= val vid = exp value

| datatype tyvarseq tycon = vid datatype

| type tyvarseq tycon = ty type

| open longstrid open

Figure 2.3: Grammar for Core-level expressions (ezp) and for Core-level
declarations (dec).

14 CHAPTER 2. THE LANGUAGE MODML

The Core language provides two mechanisms for accessing components in
other structures—through qualified identifiers and through the open decla-
ration, which makes accessible (non-qualified) all identifiers in the domain of
a structure.

For simplicity, the Core language does not support sequential declara-
tions. However, local sequential declarations may be modelled by use of
nested let expressions. Moreover, the Modules language that we present
in Section 2.14 does support sequential declarations. Also for simplicity, a
datatype declaration in ModML allows for the declaration of only one nullary
value constructor. This simple form of datatypes encapsulates the problems
caused by generativity and identifiers with constructor status. It is easy to
extend ModML to support datatypes with unary constructors (i.e., construc-
tors that take value arguments) and with multiple constructors.

2.6 Type Schemes and Signatures

A substitution S is a finite map from type variables to types. When S is a
substitution, we write tynames S to denote the type names that occur free
in the range of S. Moreover, the involved type variables of a substitution S,
written Inv S, is defined by

Inv S=Dom SU(|J tyvars(S(a)))
acDom S
By natural extension, substitutions can be applied to any semantic object
that do not bind type names; their effect is to replace each type variable «
by S(a). In applying S to a type scheme Va(*).7, first bound type variables
must be changed such that tyvars o®) NInv S = 0.

A type scheme o = Va®) .7 generalises a type 7', written o > 7', if there
exist types 7®) such that 7' = 7{7(®) /a®)}. If o' = VB! .7’ then o generalises
o', written ¢ > o', if 0 > 7' and A% contains no free type variables of
0. Two type schemes are considered equal if they can be obtained from
each other by renaming and reordering of bound variables, and deleting type
variables from the prefix which do not occur in the body. We consider a
type 7 to be a type scheme, identifying it with V().7. It is easy to verify
that type scheme generalisation is reflexive and transitive. Moreover, type
scheme generalisation is closed under substitution.

Signatures play the role at the Modules-level as type schemes do at the
Core-level (see Figure 2.2). Similarly, as for type schemes, the prefix (7') in

2.7. ELABORATION OF CORE 15

signatures binds type names. Two signatures are considered equal if they can
be obtained from each other by renaming of bound names and by deletion of
type names from the prefix that do not occur in the body. When bound type
names are changed, we demand that arities of type names are preserved.

As an example, let ¢t and ¢’ be type names with arity 1, let a be a type
constructor, and let A be a value identifier. Then, the signature ({¢,¢'})({a —
(t, VE)}, VE), where VE = {A — (Va.a t,c)}, is equal to the signature
{t'}H){a— (¢, VE")}, VE'), where VE' = {A — (Va.a t',c)}.

2.7 Elaboration of Core

The rules for elaborating Core-level expressions allow inferences among sen-
tences of the form
Eremp=r1

where ezp is an expression, 7 is a type, and E is an environment, which
provides assumptions for free identifiers in exp. Sentences of this form are
read “exp elaborates to 7 in E.”

Expressions Etrerp= T‘

E(longvid) = (0,is) o> T

: (2.4)
E Flongvid = 7
vid ¢ Dom E or is of E(vid) =v

E + {vid — (1,v)} F exp = 7' (2.5)

ErFfn' vid => exp => 17— 7')
E(longvid) = (0,¢) o>7 EFep=1 (2.6)

E + fn° longvid => exp = 7 — 7' ’
Etexp, =17 —>7 FElFempy,=171 (2.7)

Et exp, exp, = 7)
Erdec= (T)E' E+FEFerp=7 TN (tynames(E,7)) =10 (2.8)

EF let dec in exp end = 7

16 CHAPTER 2. THE LANGUAGE MODML

Comments:

(2.5) and (2.6) In Chapter 4, we shall need to refer to those identifiers that
occur free in an expression. In the case of the fn expression, this infor-
mation cannot be obtained from the expression alone; thus, we annotate
a fn expression by the identifier status for the identifier vid (or longvid),
during elaboration.

(2.8) The side condition here requires that local type names do not escape;
without it, the typing rules become unsound [Kah93]. The side condition
is different from that of rule (4) of [MTHMO97]. In the static semantics
of [MTHMO7], expressions are elaborated in contexts that, besides from
an environment, also holds a set of type names. The side condition then
suggests that all type names occurring in the result of elaborating the dec-
laration should occur in the type name set component of the context in
which the expression is elaborated. This requirement makes elaboration
of a phrase dependent on a larger part of the context than the part that
provides assumptions for free identifiers of the phrase. Thus, the static
semantics of [MTHMO97] is ill-suited for separate compilation. In partic-
ular, the separate compilation system that we shall discuss in Chapter 6
assumes that elaboration of a phrase depends only on assumptions for free
identifiers of the phrase. The static semantics that we present here has
this property (in a sense that we make precise in Chapter 4.)

The rules for elaborating Core-level declarations allow inferences among
sentences of the form

EtFdec= X

where dec is a declaration, ¥ is a signature, and E' is an environment, which
provides assumptions for free identifiers of dec. Sentences of this form are
read “dec elaborates to ¥ in E.” Intuitively, type names that are bound in
the resulting signature are those type names that must be considered fresh.
In the case of elaboration of expressions, such bound type names stem from
datatype declarations; incompatibility of bound type names with other type
names is explicitly enforced (by side conditions) in rules that refer to the
body of the signature (e.g., rule 2.30).

2.8. GRAMMAR FOR SIGNATURE EXPRESSIONS 17

Declarations ‘E Fdec = X ‘

Etexp=r71 tyvars a® Ntyvars E =0

2.9
E - val vid = exp = (0){vid — (Va®) .7,v)} (2:9)
tyvarseq = o'®) arity t = k
VE = {vid — (Va®).a®)t)} TE = {tycon — (t, VE)} (2.10)
E I~ datatype tyvarseq tycon = vid = ({t})(TE, VE) '
tyvarseq = a®) Er ty =1 (2.11)
E I type tyvarseq tycon = ty = (0){tycon — (Aa® .7 {})} '
E(longstrid) = E' Dom E' =1 (2.12)

E + open’ longstrid = (D)E’

Comment:

(2.12) In Chapter 4, we shall need to refer to those identifiers that are de-
clared by a Core-level declaration. In the case of the open declaration,
this information cannot be obtained from the declaration alone; thus, we
annotate the open declaration by the set of declared identifiers, during
elaboration.

2.8 Grammar for Signature Expressions

The grammar for specifications (spec) and signature expressions (sigezp) is
given in Figure 2.4. For simplicity, ModML does not have support for sig-
nature declarations; it is straightforward, however, to extend ModML to
support signature declarations. Also for simplicity, ModML does not sup-
port type sharing specifications; as we shall see in Section 2.13, type sharing
specifications are easily added to the language.

18 CHAPTER 2. THE LANGUAGE MODML

sigerp = sig spec end basic

| sigexp where type

tyvarseq longtycon = ty type realisation

spec = val wid : ty value

| type tyvarseq tycon type

| datatype tyvarseq tycon = vid datatype

| structure strid : sigexp structure

| spec, specy sequential

| € empty

Figure 2.4: Grammar for specifications (spec) and signature expressions
(sigezp).

® or (T)(E, (T')E") FunSig = TyNameSet x (Env x Sig)
FunEnv = Funld -2 FunSig

StatBasis = FunEnv x Env

Sy
o
L]
=
3
M M M M

ProgSig = TyNameSet x Basis

Figure 2.5: Semantic objects for elaborating ModML Modules.

2.9 Semantic Objects for Modules

Additional semantic objects for elaborating ModML Modules are given in
Figure 2.5.

As for signatures the prefix (7') in functor signatures ® and program sig-
natures (7') B binds names. Two functor signatures (or program signatures)
are considered equal if they can be obtained from each other by renaming
of bound names and by deletion of type names from the prefix that do not
occur in the body. When bound type names are changed, we demand that
arities of type names are preserved.

2.10. REALISATION 19

2.10 Realisation

A realisation is a map ¢ : TyName — TypeFcn such that ¢ and ¢(¢) have the
same arity. The support Supp ¢ of a realisation ¢ is the set of type names
t for which (t) # t. The yield Yield ¢ of a realisation ¢ is the set of type
names which occur in some ¢(t) for which ¢ € Supp ¢. Realisations ¢ are
extended to apply to all semantic objects; their effect is to replace each type
name t by ¢(t).

As an example, let ¢t be a type name with arity 1 and let ¢ be a type
name with arity 0. Then, the map ¢ = {t —» Aa.a — '} is a realisation
with Supp ¢ = {t} and Yield ¢ = {t'}. Moreover, applying the realisation ¢
to the type 7 = t' t results in the type (1) =t' — t' (after beta-conversion).

2.11 Well-Formedness

A pair (0, VE) is called a type structure. Recall that if ¢ has arity & then we
sometimes write ¢ to mean the type function Aa®.a®)t. A type structure
(0, VE) is well-formed if either § = t, for some type name ¢, or VE = {}.
Any other semantic object is well-formed if all type structures in it are well-
formed.

Informally, well-formedness guarantees that datatype declarations are
always associated with type names. As an example, assume ¢ is a type
name with arity 0, « is a type variable, and A is a value identifier, then,
the type structure (¢,{A — (¢,c)}) is well-formed, but the type structure
(A().t = t,{A — (t,c)}) is not.

2.12 Elaboration of Signature Expressions

The rules for elaborating specifications allow inferences among sentences of
the form

Bt spec = X

where spec is a specification, X is a signature, and B is a basis, which provides
assumptions for free identifiers of spec. Sentences of this form are read “spec
elaborates to X in B.”

20 CHAPTER 2. THE LANGUAGE MODML

Specifications ‘B F spec = Z‘

Eof BFty=1 o =tyvars

2.13
Bt val vid : ty = (0){vid — (Va®.1,v)} (2:13)
tyvarseq = o® arity t = k (2.14)
B |- type tyvarseq tycon = ({t}){tycon — (t,{})} '
tyvarseq = ¥ arity t = k
VE = {vid = (Va®.a®t c)} TE = {tycon ~ (t, VE)} (2.15)
B+ datatype tyvarseq tycon = vid = ({t})(TE, VE) '
B |- sigexp = (T)E (2.16)
B+ structure strid : sigezp = (T){strid — E} '
Dom E; N Dom E, =)
BF specy; = (Tl)El (T1 U Tg) M tynames B = (Z]
B+ Ei b specy = (T3)Ey Ty N (11 Utynames Ey) = () (2.17)
B\ spec, speco = (T UTh)(E; + E») '
(2.18)

BlFe= (0){}

Comment:

(2.17) The side conditions here allow type names that occur free in (7%)F»
to be members of T, but type names that occur free in (77)F; cannot be
members of Ty. The side condition (T;UTs)Ntynames B = () is necessary to
avoid capture of type names stemming from B in the resulting signature.

The rules for elaborating signature expressions allow inferences among
sentences of the form
B F sigexp = X2

where sigezrp is a signature expression, X is a signature, and B is a basis,
which provides assumptions for free identifiers of sigexp. Sentences of this
form are read “sigexp elaborates to ¥ in B.”

2.12. ELABORATION OF SIGNATURE EXPRESSIONS 21

Signature Expressions B |- sigezp = X ‘

BF spec = X
B |- sig spec end = X

(2.19)

B\ sigezp = (T)E T Ntynames B =)
tyvarseq = a¥) E of Bty =7
E(longtycon) = (t, VE) teT ¢={t— Aa®.7}

, (2.20)
B sigexp where type tyvarseq longtycon = ty = (T)(¢(E))

Comments:

(2.20) The resulting signature (7)(¢(E)) is equal to the signature (7 \
{t})(p(E)) because t ¢ tynames 7 follows from side conditions and elab-
oration of ty.

(2.20) In the rule for where type signature expressions in the static semantics
of [MTHMO7]|, the result is required to be well-formed (see Section 2.11
for the definition of well-formedness). Because well-formedness is not en-
forced in rule 2.20, non-well-formed signatures may be introduced by the
rules. However, no real structure (i.e., a structure existing outside of
a functor body) can match a non-well-formed signature. (It is not the
case that all well-formed signatures can be matched by real structures.)
Thus, leaving out the well-formedness requirement in rule 2.20 does not
contribute to unsoundness of the static semantics. Now, the reason the re-
quirement of well-formedness is inadequate is that well-formedness is not
closed under realisation; thus, if well-formedness of the resulting signature
is required in rule 2.20 then we do not have the property that elabora-
tion of specifications and signature expressions is closed under realisation.
Because a well-formedness requirement in rule 2.20 restricts only what
signature expressions elaborate, we can easily enforce this check in an im-
plementation, without compromising soundness. We return to the issue
of well-formedness in Section 5.4 on page 93.

22 CHAPTER 2. THE LANGUAGE MODML

2.13 Type Sharing

Standard ML supports type sharing specifications of the form
spec type sharing longtycon, = longtycon,

Type sharing specifications of the above form may be added to ModML with
the elaboration rule

BtF spec= (T)E ¢ ={t;— ty} arity t; = arity ¢,
E(longtycon;) = (t;, VE;), i =1..2 {t1,t.} C T

_ (2.21)
B | spec type sharing longtycon, = longtycon, = (T)(p(F))

For the discussion in this section, we call the language ModML with type
sharing specifications added ModMULgparing. Standard ML also supports in-
clude specifications of the form

include sigezp

Include specification can be added to ModML with the elaboration rule

B F sigexp = X
B F include sigerp = X

(2.22)

We call the language ModML with include specifications added ModMLipc1ude-
We know of no signatures that can be expressed in ModMLgyaring and not in
ModMLiyeuge- As an example, consider the signature resulting from elabo-
rating (in the empty basis) the ModMLgparing Signature expression

sig type t

type s

sharing type t = s
end

This signature can also be expressed with the ModM Li,cude signature expres-
sion

sig type t
include sig type s end where type s =t
end

2.14. GRAMMAR FOR MODULES 23

2.14 Grammar for Modules

The language of Modules constitutes structure-level expressions (strezp),
structure-level declarations (strdec), and top-level declarations (topdec), for
which the grammar is given in Figure 2.6.

strexp = struct strdec end basic
| longstrid structure identifier
| strexp : sigexp transparent constraint
| strezp :> sigexp opaque constraint
| funid (strezp) functor application
strdec = dec declaration
| structure strid = strezp structure
| strdecy strdeco sequential
| € empty
topdec = strdec structure declaration
| functor funid (strid : sigezp)
= strexp functor
| topdec, topdec, sequential
| € empty

Figure 2.6: Grammar for structure-level expressions (strezp), structure-level
declarations (strdec), and top-level declarations (topdec).

2.15 Signature Instantiation and Functor Sig-
nature Instantiation

Instantiation is a mechanism for hiding implementation details of type com-
ponents of a structure. Formally, an environment E’ is an instance of a
signature ¥ = (T')E, written X > E’| if there exists a realisation ¢ such that
¢(F)=FE"and Supp ¢ CT.

The notion of instantiation extends to functor signatures. A pair (E,) is
called a functor instance. Given ® = (T3)(E},), a functor instance (Fy, X9)

24 CHAPTER 2. THE LANGUAGE MODML

is an instance of ®, written ® > (Fy, Xy), if there exists a realisation ¢ such
that o(E1,3) = (Es, X2) and Supp ¢ C T1.

2.16 Enrichment and Signature Matching

Whereas instantiation allows for hiding implementation details of type com-
ponents of a structure, enrichment allows for hiding components.
A type structure (61, VE,) enriches another type structure (6, VEs),

written (01, VEl) b (92, VEQ), if

1. 91 = 02

2. Either VE1 = VE2 or VE2 = {}
Further, let ¢ and o' be type schemes and let is; and isy, be members of
IdStatus. The pair (o1,14s1) enriches the pair (o9, 1s3), written (oy,1is1) >
(0'2, iSQ), if

1. o1 > 09

2. Either is; = 489 or is9 = v

Finally, an environment £y, = (SE;, TE, VE;) enriches another environment
E2 = (SEQ, TEQ, VEQ), written E1 ~ EQ, if

1. Dom SE; D Dom SEs; and SEi(strid) = SE(strid) for all strid €
Dom SE,

2. Dom TFE, 2 Dom TE, and TE:(tycon) = TE(tycon) for all tycon €
Dom TE,

3. Dom VE; O Dom VE,; and VE,(vid) > VE,(vid) for all vid €
Dom VE,

Signature matching is the combination of signature instantiation and en-
richment. An environment F matches a signature X iff there exists another
environment E’ such that ¥ > F' < F.

2.17. ELABORATION OF MODULES 25

2.17 Elaboration of Modules

In this section we present inference rules for elaborating structure-level ex-
pressions, structure-level declarations and top-level declarations. The rules
for elaborating structure-level expressions and structure-level declarations
allow inferences among sentences of the forms

BtF strezp =Y and B F strdec = X

where strexp is a structure-level expression, strdec is a structure-level decla-
ration, ¥ is a signature, and B is a basis, which provides assumptions for
free identifiers in strexp or strdec, respectively. Sentences of the former form
are read “strexp elaborates to ¥ in B.” Sentences of the latter form are read
“strdec elaborates to X in B.”

Structure-Level Expressions B F strezp = X ‘

Bt strdec = X

(2.23)
B+ struct strdec end = X

B(longstrid) = E

2.24
B\ longstrid = (0)E (2.24)

Bt strezp = (T)E Bt sigezp = %
Y >FE <E TnNtynames B =10

Bt strexp : sigexp = (T)E'

(2.25)

Bt strezp = (T)E Bt sigezp = X
Y>FE <E TnNtynames B =1

B & strexp :> sigexp = X

(2.26)

B\ strezp = (T)E
B(funid) > (E",(T")E') E = E"
(TUT')Ntynames B = ()
B\ funid (strexp) = (TUT')E'

(2.27)

26 CHAPTER 2. THE LANGUAGE MODML

Comments:

(2.25) and (2.26) The side condition (T'Ntynames B = {)) is necessary; with-
out it, the structure expression

struct datatype a = A
end : sig type a end where type a = int

elaborates, in the basis {int — (¢, {})}, to the signature (#){a — (¢, {A —
(t,c)})}, which is wrong, because a datatype declaration is supposed to
generate a fresh type.

(2.27) Generative type names of the functor argument may propagate to the
resulting signature.

Structure-Level Declarations | B F strdec = X

E of BFdec= X

2.28
Bt dec =X ()
B & strezp = (T)E (2.29)
B | structure strid = strexp = (T){strid — E} '
Bt strdec; = (T1)E; (T1 UTy) Ntynames B =)
B+ E; F strdeco = (T3)Ey To N (Ty U tynames Ey) = () (2.30)
B & strdecy strdecy = (Ty U T)(Ey + E») '
(2.31)

BlFe= (0){}

2.17. ELABORATION OF MODULES 27

Comment:
(2.30) Type generativity is enforced by appropriate alpha-conversion.

The rules for elaborating top-level declarations allow inferences among
sentences of the form
Bt topdec = (T)B'

where topdec is a top-level declaration, (T')B’ is a program signature, and B
is a basis, which provides assumptions for free identifiers in topdec. Sentences
of this form are read “topdec elaborates to (T')B' in B.”

Top-level Declarations B\ topdec = (T)B'
Bt strdec = (T)E
(2.32)
Bt strdec = (T){}, E)
Bt sigerp = (T)E T Ntynames B = ()
B + {strid — E} \ strezp = % F = {funid — (T)(E,%)} (2.33)
B\ functor funid (strid : sigexp) = strexp = (0)(F,{}) '
B\ topdec; = (T1)B; (11 UT3) Ntynames B =)
B + B F topdec, = (T3)By, T N (T} U tynames By) = () (2.34)
B | topdec, topdecy, = (T1 UT3)(By + By) '
(2.35)

BEe= O){}{}

Comments:

(2.33) The requirement (7' N tynames B = {)) ensures that no accidental
sharing is assumed between E and B. Because it is the applications of a
functor that generate new type names—and not the declaration of it—the
set of bound type names in the resulting program signature is empty.

(2.34) As for sequential structure-level declarations, type generativity is en-
forced by appropriate alpha-conversion.

28

CHAPTER 2. THE LANGUAGE MODML

Chapter 3

Reasoning about ModML

In this chapter, we demonstrate some properties of the static semantics of
ModML. In particular, in Section 3.1, we show that many of the relations
between semantic objects are closed under realisation. Moreover, we shall
demonstrate that elaboration of signature expressions and of structure-level
expressions is closed under realisation.

Similar results have been demonstrated by Milner and Tofte in [MT91] for
the static semantics of SML’90. In particular, Milner and Tofte demonstrate
that elaboration of signature expressions is closed under realisation [MT91,
Theorem 10.1]. However, the inspiration for Theorem 10.1 in [MT91] was
to show that there is a systematic way to find structure names and type
functions that satisfy sharing specifications in the SML’90 static semantics;
namely to choose fresh names whenever possible and then identify different
names when it is found from sharing specifications that they ought to be
identical. In the static semantics of SML’97 and of ModML, sharing specifi-
cations and where type signature expressions are dealt with explicitly in the
rules by applying realisations, systematically.

There are other reasons, however, why it is important for the static se-
mantics of SML’97 and of ModML that elaboration of signature expressions
is closed under realisation. First, as we shall see in Chapter 5, this property
makes it possible to translate programs with opaque signature constraints
into programs without opaque signature constraints in such a way that elab-
oration is preserved (in a sense we make precise in Chapter 5.) Second, the
realisation property for elaboration of signature expressions is important so
as to demonstrate that elaboration of structure-level expressions is closed
under realisation; this property is used in Chapter 8 to demonstrate that

29

30 CHAPTER 3. REASONING ABOUT MODML

functors may be specialised and translated for each application of the func-
tor in such a way that the resulting program is well-typed (in a sense we
make precise in Chapter 8.)

Further, in Section 3.2, we shall see that signatures elaborate to so-called
type-explicit signatures; this property of elaboration of signatures is impor-
tant for signature matching to be unique; that is, given ¥ and E, there exists
at most one environment £~ such that ¥ > E~ < E. A global requirement
that all objects involved in the proof of some sentence be type explicit was
removed from the SML’97 static semantics, because it can be shown that no
rules would introduce signatures that are not type-explicit; in Section 3.2,
we give the proof of this property for ModML.

3.1 Realisation Closedness Properties

In this section we shall see that generalisation, signature instantiation, func-
tor signature instantiation and enrichment are all closed under realisation.
Moreover, we shall demonstrate that elaboration of Core-level declarations,
of signature expressions, and of structure-level expressions is also closed un-
der realisation.

3.1.1 Generalisation

Generalisation is closed under realisation. As an example, let 1, .., and
tint be type names with arity 0 and let ¢, be a type name with arity 1.
Further, let ¢ be the realisation {t; — AB.B — ti, t2 — trea}, 0 be
the type scheme Va.ao — « t; and 7 be the type o — t5 t;. From the
definition of generalisation it follows that o > 7. Moreover, we can derive
o(0) =Va.a — (@ = ting) and ©(7) = treal — (treal — ting). We can now use
the definition of generalisation again to derive ¢(o) > (7), as suggested.

We now show that for any realisation ¢, if a type scheme o generalises a
type 7 then the type scheme (o) generalises the type (7).

Proposition 3.1.1 (Type generalisation is closed under realisation)
If o = 7' then p(0) > ©(1') for any realisation .

PrOOF Let 0 = Va® . 7. From the definition of generalisation, we have
7 = 1{r® /a®} for some 7*). It follows that

p(r') = o(r){e(r®) /aM} (3-1)

3.1. REALISATION CLOSEDNESS PROPERTIES 31

From (3.1) and from the definition of generalisation, we have Ya(®).o(1) >~
©(7"). Now, because realisations are closed w.r.t. type variables (i.e.,
tyvars ¢ = (), for any realisation ¢), we have ¢(o) = ¢(7'), as required.

O

Damas and Milner [DM82] have a lemma expressing that generalisation
is closed under substitution of types for type variables; given type schemes
o and o', if 0 > ¢’ then S(o) > S(¢') for any substitution S, mapping type
variables to type schemes. The following proposition states that generalisa-
tion of type schemes also is closed under realisation:

Proposition 3.1.2 (Type scheme generalisation is closed under re-
alisation) If o > o' then ¢(o) = @(o') for any realisation .
PrOOF Let o' = V3® 7', From the definition of generalisation we have

o> 7 (3.2)
tyvars B¢ N tyvars o = () (3.3)

Now, from (3.2) and Proposition 3.1.1 we have
o(0) = ol (3.4)
Also, from (3.3) and because tyvars ¢ = () for any realisation ¢, we have
tyvars 84 N tyvars (o) = () (3.5)

It now follows from (3.4), (3.5), and from the definition of generalisation that
©(0) = VBY.o(1"), hence, it follows that we have p(c) = ¢(o’), as required.
O

3.1.2 Signature Instantiation

Signature instantiation is closed under realisation. As an example, consider
the signature ¥ = ({t}){x — (a t') t}. The environment £ = {x — a t' —
a t'} is an instance of X, because there exists a realisation ¢ = {t — AS.5 —
B} such that p({x — (a t') t}) = E and Supp ¢ C {t}. Moreover, let
¢ = {t' = Ad/.t"} be a realisation. It is easy to check that ¢'(F) is an
instance of ¢'(X).

Milner and Tofte demonstrate that instantiation of signatures, in the
SML’90 static semantics, is closed under realisation [MT91, Lemma 10.2].
This property also holds for the ModML static semantics:

32 CHAPTER 3. REASONING ABOUT MODML

Proposition 3.1.3 (Signature instantiation is closed under realisa-
tion) If ¥ > FE then ¢(X) > ¢(E) for any realisation ¢.

PrROOF Let ¥ = (Tj)Ey. From the definition of signature instantiation we
have there exists a realisation g, such that (Supp ¢o C Tp) and ¢o(Ey) = E.
After renaming of bound names of ¥ we can assume

(Supp ¢ U Yield o) N Ty =0 (3.6)

Let ¢’ be the realisation with support Supp ¢’ C T, and values

i _) ©lpo(t)) if t € Supp o
p(t) = { t otherwise

We then have (Supp ¢’ C Tp) and ¢'(¢(Ep)) = ¢(vo(Ep)) = @(E), thus, it
follows from the definition of signature instantiation and from (3.6) that we
have ¢(X) > ¢(E), as required. O

3.1.3 Functor Signature Instantiation

Also instantiation of functor signatures is closed under realisation. The fol-
lowing proposition states this property:

Proposition 3.1.4 (Functor signature instantiation is closed under
realisation) If ® > (E,X) then o(®) > ¢(E,X) for any realisation .

PROOF Let ® = (Tp)(Ep, o). From the definition of functor signature
instantiation, we have that there exists a realisation ¢ such that (Supp ¢y C
Tp) and @o(Ey, L) = (E,X). After appropriate renaming of bound names of
®, we have

(Supp @ U Yield) N Ty =0 (3.7)

Let ¢’ be the realisation with support Supp ¢’ C T, and values

1 _) eleo(t)) if t € Supp @
p(t) = { t otherwise

We then have (Supp ¢’ C Tp) and ¢'(¢(Eg, X0)) = ©(po(Eg, X0)) = ¢(E,X),
thus, it follows from the definition of functor signature instantiation and from
(3.7) that we have ¢(®) > ¢(F,), as required. O

3.1. REALISATION CLOSEDNESS PROPERTIES 33

3.1.4 Enrichment

Enrichment is closed under realisation. We first show that this holds for
enrichment of type structures.

Proposition 3.1.5 (Type structure enrichment is closed under re-
alisation) If (61, VE|) = (0, VE5) then ¢(61, VE1) = @(0y, VE3) for any
realisation .

PrOOF From the definition of enrichment, we have 6; = 6, and
Either VE, = VE, or VE, = {}
It follows that we have ¢(61) = ¢(f2) and
Either o(VE:) = ¢(VE,) or ¢o(VE,) = {}

Thus, from the definition of enrichment, we have ¢(6;, VE;) > ¢(0s, VE,),
as required. O

The property also holds for enrichment of value environment entries:

Proposition 3.1.6 (Enrichment of value environment entries is closed
under realisation) If (o1,is1) = (09, 1s2) then (o1,1is1) > @(09,ise) for
any realisation .

ProOOF The proof follows directly from Proposition 3.1.2 and from the
definition of enrichment. O

Using the latter two propositions, we can now demonstrate that enrich-
ment of environments is closed under realisation:

Proposition 3.1.7 (Enrichment is closed under realisation) If E; >
E, then ¢(Ey) = @(FEs) for any realisation .

PROOF The proof is by induction on the structure of FE;. Let
(SE1, TE|, VE,) = E; and (SE,, TE,, VE5) = E,. From assumptions and
the definition of enrichment, we have

1. Dom SE; O Dom SEs; and SE(strid) > SE(strid) for all strid €
Dom SE,

34 CHAPTER 3. REASONING ABOUT MODML

2. Dom TE, O Dom TE, and TE(tycon) > TE;(tycon) for all tycon €
Dom TFE,

3. Dom VE; DO Dom VE, and VE(vid) > VE,(vid) for all vid €
Dom VE,

For each strid € Dom SE, we can apply induction to get o(SE:(strid)) >
©(SEs(strid)), hence, we have

Dom(p(SE1)) 2 Dom(p(SE3)) and (p(SE4))(strid) > (p(SE2))(strid)
for all strid € Dom(¢(SE5)) (3.8)

Further, we can apply Proposition 3.1.5 for each tycon € Dom TFE, to get
©(TE(tycon)) > o(TE(tycon)), hence, we have

Dom(p(TE1)) 2 Dom(p(TEs)) and (p(TE1))(tycon) = (p(TEs2))(tycon)
for all tycon € Dom(¢(TE,)) (3.9)

Finally, we can apply Proposition 3.1.6 for each vid € Dom VFE, to get
©(VE1(vid)) = ¢(VE,(vid)), hence, we have

Dom(i(VE1)) 2 Dom(p(VEs)) and (o(VEY)) (vid) = ((VEy))(vid)
for all vid € Dom(p(VE,)) (3.10)

Now, from the definition of enrichment and from (3.8), (3.9), and (3.10), we
have ¢(F1) > ¢(F2), as required. O

3.1.5 Type Expressions

No new types are generated during elaboration of a type expression; that
is, all type names in the result type occur free in the environment in which
the type expression is elaborated. Further, elaboration of type expressions is
closed under realisation. These observations are expressed in the following
proposition.

Proposition 3.1.8 (Elaboration of type expressions is closed under
realisation) If E F ty = 7, then tynames 7 C tynames E and p(F) - ty =
(1) for any realisation .

3.1. REALISATION CLOSEDNESS PROPERTIES 35

PrOOF The proof is by induction over the structure of ty and proceeds by
case analysis.

CASE ty = ty, -> ty,| From assumptions and from rule 2.1, we have

Erty,=n (3.11)
Er-ty,=m (3.12)
T=T — Ty (3.13)

By applying induction to (3.11) and (3.12), we have

tynames 71 C tynames E and ¢(F) - ty, = ¢(m1)
tynames 7, C tynames E and ¢(E) F ty, = ¢(72)

It follows that we have (tynames 7 C tynames E) and because (1) =
o(11) = @(12) follows from (3.13), we can apply rule 2.1 to get ¢(E) +
ty, => ty, = (1), as required.

‘CASE ty = tyvar‘ From assumptions, from rule 2.2, and because ¢(a) = «,

for any type variable «, we have ¢(F) - tyvar = ¢(7), as required.

‘CASE ty = tyseq longtycon‘ Write fyseq in the form ty,---ty,. From as-
sumptions and from rule 2.3, we have

E(longtycon) = (6%), VE) (3.14)
Er-ty, =7, i=1.k
7= (11, -, 7%)0% (3.15)

By applying induction £ times, we have
tynames 7; C tynames F and ¢(F) F ty, = ¢(1;), i =1..k (3.16)

From (3.14), we have (¢(F))(longtycon) = ¢(0®), VE). Further, it follows
from (3.15) that we have (1) = (p(1),---, (%)) (©(0®)). Thus, from
(3.16), we have ¢(E) - ty = ¢(7), as required. Moreover, from (3.14), we
have (tynames §*) C tynames E), hence, from (3.16) and from (3.15), we
have (tynames 7 C tynames E), as required. a

36 CHAPTER 3. REASONING ABOUT MODML

3.1.6 Core-Level Declarations

When phrase is either a Core-level expression or a Core-level declaration,
when A is either a type or a signature, and when E is an environment, it
is possible to infer sentences of the form E + phrase = A, such that a free
type name in A is not free in E. For example, let x and y be distinct value
identifiers and let ¢ and ¢’ be distinct type names with arity 0. Then the
sentence

{y—= t,v)}Ffnx=>y=>t >t

is derivable by use of rule 2.4 and rule 2.5. In this example, the type name
' is not free in the environment {y — (¢,v)}. It is crucial that with any
type substituted for #, the preceding sentence is still derivable. Indeed,
elaboration of Core-level expressions and of Core-level declarations is closed
under realisation:

Proposition 3.1.9 (Elaboration of expressions and declarations is
closed under realisation) Let phrase be either an expression or a decla-
ration and let A be either a type or a signature. If E + phrase = A then
©(E) F phrase = p(A) for any realisation ¢.

Proor By induction over the structure of phrase. We show the three
interesting cases.

‘CASE exp:longm'd‘ From assumptions and from rule 2.4, we have
E(longvid) = (0,is) and ¢ > 7 and F F exp = 7. It follows from
Proposition 3.1.1 that we have ¢(o) = ¢(7), thus, from rule 2.4, we have
©(E) I longvid = ¢(T), as required.

‘CASE exp = let dec in exp’ end‘ From assumptions and from rule 2.8, we
have

Et dec= (T)FE' (3.17)

E+FEtFerp'=r1 (3.18)

T N tynames(E,7) = () (3.19)
Eremp=r

By appropriate renaming of bound type names, we can assume

T N (Supp ¢ U Yield p) =0 (3.20)

3.1. REALISATION CLOSEDNESS PROPERTIES 37

From (3.20) and by applying induction to (3.17), we have
©(E) F dec = (T)(p(E")) (3.21)
We can now apply induction to (3.18) to get
©(E+ E') & exp’ = (1) (3.22)
Moreover, from (3.19) and from (3.20), we have
T N tynames(p(E), (7)) = 0 (3.23)

Now, from rule 2.8 and from (3.21), (3.22), and (3.23), we have ¢(F) F
exp = ¢(7), as required.

‘CASE dec = datatype tyvarseq tycon = m’d‘ From assumptions we have
E'F dec = X. Tt follows from rule 2.10 and by appropriate renaming of
bound names of ¥ that we have p(E) - dec = ¢(X), as required. O

3.1.7 Specifications and Signature Expressions

We shall now see that elaboration of specifications and of signature expres-
sions is closed under realisation.

Proposition 3.1.10 Let phrase be either a specification or a signature ez-
pression. If B & phrase = X then tynames ¥ C tynames B and ¢(B) F
phrase = p(X) for any realisation .

PROOF The proof is by induction on the structure of phrase and proceeds
by case analysis.

CASE spec = val vid : ty‘ From assumptions and from rule 2.13, we have

Eof BFty=r1 (3.24)
o®) = tyvars T (3.25)
Y = (0){vid — Va® .7} (3.26)

From Proposition 3.1.8 and from (3.24), we have

tynames 7 C tynames(E of B) (3.27)
©(E of B) Fty = o(T) (3.28)

38 CHAPTER 3. REASONING ABOUT MODML

Now, from (3.26) and from (3.27), we have
tynames Y C tynames B
Further, let

BY = tyvars(p(7)) (3.29)
From (3.28) and from (3.29), we can now apply rule 2.13 to get
©(B) Fval vid : ty = (0){vid — VY. .o(7)} (3.30)

Now, from (3.25) and because tyvars 7 O tyvars(¢(7)) for any type 7 and
realisation ¢, we have al® D B0 hence, from the definition of equality
on type schemes, we have V3" .o(1) = Val¥).¢(7). It follows that we have
©(B) F spec = ¢(X), as required.

‘CASE spec = type tyvarseq tycon‘ From assumptions and from rule 2.14,
we have

a® = tyvarseq (3.31)
arity t =k (3.32)
X = ({tH{tycon — (¢, {})} (3.33)
From (3.33), we have tynames ¥ = (), hence, we have
tynames X C tynames B (3.34)
p(X)=3% (3.35)

Now, from rule 2.14 and from (3.31), (3.32), (3.33), and (3.35), we have
©(B) F spec = ¢(¥), as required.

‘CASE spec = datatype tyvarseq tycon = vz'd‘ From assumptions and from
rule 2.15, we have

o®) = tyvarseq (3.36)
arity t = k (3.37)
Y = ({t})({tycon — (t, VE)}, VE) (3.38)

where VE = {vid — Va®).a(®t}. From (3.38), we have tynames ¥ = (),
hence, we have

tynames Y C tynames B
pX)=% (3.39)

3.1. REALISATION CLOSEDNESS PROPERTIES 39

Now, from rule 2.15 and from (3.36), (3.37), (3.38), and (3.39), we have
©(B) F spec = ¢(X), as required.

‘CASE spec = structure strid : sigemp‘ From assumptions and from
rule 2.16, we have

Bt sigexp = (T)E (3.40)
Y = (T){strid — E} (3.41)
We can immediately apply induction to (3.40) to get
tynames((7T)E) C tynames B (3.42)
©(B) F sigexp = ¢o((T)E) (3.43)

It follows from (3.42) that we have
tynames Y C tynames B
By renaming of bound names of ¥, we can assume
T N (Supp ¢ U Yield ¢) = ()

hence, from (3.41), from rule 2.16, and from (3.43), we have ¢(B) F spec =
©(3), as required.

‘CASE spec = specy specz‘ From assumptions and from rule 2.17, we have

B spec, = (T1) By (3.44)

(T; UT3) Ntynames B = () ()
B+ E - specy, = (12)E, (3.46)
Ty, N (T} U tynames E;) = () (3.47)
Y= (T1UTh)(E, + E») (3.48)

By renaming of bound names of ¥, we can assume

(T1 UT) N (Supp ¢ UYield p) =0 (3.49)
By applying induction twice to (3.44) and (3.46) we get
tynames((71)E1) C tynames B (3.50)
©(B) F specy = o((T1)E) (3.51)
tynames((75)Es) C tynames(B + E;) (3.52)
©(B + Eq) = specy, = ¢((12) E») (3.53)

40 CHAPTER 3. REASONING ABOUT MODML

From (3.48), (3.50), (3.52), and (3.45), we have
tynames Y C tynames B
Now, from (3.49), (3.45), and (3.47), we have

(Ty UTy) N tynames(¢(B)
Ty N (T} U tynames(p(F1)

(3.54)
(3.55)

)
From rule 2.17 and from (3.51), (3.54), (3.53), (3.55), (3.49), and (3.48), we
have ¢(B) - spec = p(X), as required.

0
0

‘ CASE spec = e‘ The result follows immediately from rule 2.18.

‘ CASE sigerp = sig spec end‘ The result follows immediately from rule 2.19
by induction.

CASE sigexp = sigexp’ where type tyvarseq longtycon = ty| From assump-
tions and from rule 2.20, we have

B\ sigexp' = (T)E (3.56)
T N tynames B = () (3.57)
tyvarseq = o) (3.58)
Eof BFity=r (3.59)
E(longtycon) = (t, VE) (3.60)
teT (3.61)
¢ = {t— Ao .7} (3.62)
Y= (T)(¢'(E)) (3.63)
By renaming of bound names of ¥, we can assume
T N (Supp ¢ U Yield ¢) =0 (3.64)
We can now apply induction to (3.56) to get
tynames((7)E) C tynames B (3.65)
o(B) + sigezp’ = ¢((T)E)) (3.66)
Further, from (3.59) and from Proposition (3.1.8), we have
tynames 7 C tynames B (3.67)

©(E of B) Fty = ¢(T) (3.68)

3.1. REALISATION CLOSEDNESS PROPERTIES 41

Now, from (3.65), (3.62), (3.63), and (3.67), we have

tynames Y C tynames B
Moreover, from (3.60), (3.61), and (3.64), we have

(0(E))(longtycon) = (t, p(VE)) (3.69)

From (3.57) and from (3.64), we have

T N tynames(p(B)) = 0
Now, let

" = {t — Ao o(1)} (3.70)

From rule 2.20 and from (3.66), (3.58), (3.68), (3.69), (3.61), and (3.70), we
have

©(B) F sigexp = X'

where ¥/ = (T)(¢"(¢(E))). From (3.61), (3.64), (3.62), and (3.70), we have
¢"(p(E)) = ¢(¢'(F)), thus, from (3.63) and from (3.64), we have ¢(B)
sigexp = @(3), as required. O

3.1.8 Structure-Level Expressions

In this section, we shall see that elaboration of structure-level expressions
and of structure-level declarations is closed under realisation.

Proposition 3.1.11 Let phrase be either a structure-level expression or a
structure-level declaration. If B & phrase = X then ¢(B) F phrase = (%)
for any realisation .

PRrROOF The proof is by induction over the structure of strexp and strdec.

CASE strexp = strexp’ : sigerp | Let ¢ be any realisation. From assumptions
and from rule 2.25, we have

B\ strexp' = (T)E (3.71)

B I sigezp = ¥ (3.72)

Y>FE<E (3.73)

(3.74)

(3.75)

T N tynames B = ()
B+ strezp = (T)E'

42 CHAPTER 3. REASONING ABOUT MODML

By appropriate renaming of bound names, we have
T N (Supp ¢ U Yield ¢) =0 (3.76)
By applying induction to (3.71) and from (3.76), we have
©(B) F strezp’ = (T)(¢(E)) (3.77)
From Proposition 3.1.10 and from (3.72), we have
©(B) F sigexp = (%) (3.78)
From Proposition 3.1.3, from Proposition 3.1.7, and from (3.73), we have
o(X) > o(E') < o(E) (3.79)
Moreover, from (3.76) and (3.74), we have
T N tynames ¢(B) =) (3.80)

Now, from rule 2.25 and from (3.77), (3.78), (3.79), (3.80), and (3.76), we
have ¢(B) & strezp = ¢((T)E’) for any realisation ¢, as required.

‘CASE strexp = strexp’ :> sigea:p‘ The proof for this case is similar to the
proof for transparent signature constraints.

‘CASE strexp = funid (strexp) ‘ Let ¢ be any realisation. From assump-
tions and from rule 2.27, we have

Bt strezp’ = (T)E (3.81)
B(funid) > (E", (T')E (3.82)
E - E" (3.83)

(TUT') N tynames B = () (3.84)
B\ strexp = (T UT")E' (3.85)

By appropriate renaming of bound names, we can assume
(TUT") N (Supp ¢ U Yield ¢) =0 (3.86)
By applying induction to (3.81) and from (3.86), we have

©(B) F strezp’ = (T)(¢(E)) (3.87)

3.1. REALISATION CLOSEDNESS PROPERTIES 43

From Proposition 3.1.4, from Proposition 3.1.7, and from (3.82), (3.83), and
(3.86), we have

(0(B))(funid) = (¢(E"), (T")(¢(E"))) (3.88)
p(E) = o(E") (3.89)

From (3.84) and from (3.86), we have
(TUT')Ntynames o(B) =0 (3.90)

Now, from rule 2.27 and from (3.87), (3.88), (3.89), (3.90), and (3.86), we
have p(B) b strezp = ((T UT")E’) for any realisation ¢, as required.

‘CASE strdec = dec‘ The required result follows directly from Proposi-
tion 3.1.9.

‘ CASE strdec = strdecy strdecy ‘ Let ¢ be any realisation. From assumptions
and from rule 2.30, we have

B\ strdec; = (T1)E (3.91)

(Ty UT,) N tynames B = () (3.92)
B+ E + strdeco = (T3)Es (3.93)
Ty N (17 U tynames E;) = () (3.94)
Bt strdec = (Th UTy)(E1 + E») (3.95)

By appropriate renaming of bound names, we can assume
(Ty UTy) N (Supp ¢ U Yield p) =0 (3.96)
By applying induction twice to (3.91) and (3.93) and from (3.96), we have

©(B) F strdec; = (T1)(p(F1)) (3.97)
©(B) + ¢(FE1) b strdecoy = (Ts)(¢(E»)) (3.98)

From (3.96) and from (3.92) and (3.94), we have

(T} UT,) N tynames p(B) =
To N (T1 U tynames ¢(Ey)) =

(3.99)
(3.100)
(3.101)

44 CHAPTER 3. REASONING ABOUT MODML

Now, from rule 2.30 and from (3.97), (3.99), (3.98), (3.100), and (3.96),
we have ¢(B) b strdec = ¢((Th U Ty)(E) + E»)) for any realisation ¢, as
required.

Each of the proofs for the remaining cases either follows directly or follows
directly by induction. O

3.2 Type-Explication

Recall from Section 2.16 that an environment E matches a signature ¥; =
(T1)E; if there exists an environment E~ such that ¥; > E~ < E. Thus,
matching is the combination of enrichment and instantiation. It is crucial
that, given X; and E, there is at most one such E~. If there were more than
one such E~ then elaboration of transparent signature constraints (rule 2.25)
and functor applications (rule 2.27) would become non-deterministic. The
following notion of type-explication is sufficient to ensure that signature
matching is unique:

Definition 3.2.1 (Type-explication) A signature (T')E is type-explicit if
for every t € T there exists a longtycon such that 6 of (E(longtycon)) =t
(assuming 7' C tynames E.) Moreover, a functor environment is type-explicit
if for every functor signature (7)(E,X) in its range, (T)E is type-explicit.

O

In the static semantics of SML’90 it is required that, whenever a sig-
nature expression elaborates to a signature, the signature be type-explicit
[MTHO90, rule 65]. Type-explication is not explicitly enforced in the rules
for the static semantics of SML’97 or for ModML; it can be shown, both
for SML’97 and for ModML, that signature expressions always elaborate to
type-explicit signatures. We give the proof here for ModML:

Proposition 3.2.2 Let phrase be either a specification or a signature ez-
pression. If B = phrase = X then X is type-explicit.

PROOF The proof is by induction over the structure of phrase. There are
only two interesting cases.

CASE spec = specy specy| From assumptions and from rule 2.17, we have

B\ spec, = (T1)E, (3.102)

3.2. TYPE-EXPLICATION 45

B+ E, + specy, = (Ty) Ey (3.103)
Dom E; NDom Ey =) (3.105)

By applying induction twice to (3.102) and (3.103) we get that both (77)FE;
and (Ty)F, are type-explicit. From the definition of type-explication and
from (3.105), we have X is type-explicit, as required.

CASE sigexp = sigerp’ where type tyvarseq longtycon = ty| From assump-
tions and from rule 2.20, we have

B\ sigexp' = (T)E (3.106)
T N tynames B =) (3.107)

tyvarseq = ak)

Eof BFty=r (3.108)
teT (3.109)
o = {t = Aa®) .7} (3.110)
Y= (T)(e(E)) (3.111)
By applying induction to (3.106), we have

(T)E is type-explicit (3.112)

Further, from Proposition 3.1.8 and from (3.108), we have
tynames 7 C tynames B (3.113)

From (3.107), (3.113), (3.109), and (3.110), we have ¢ ¢ tynames (¢(FE)),
hence, from (3.111) and from the definition of equality of signatures, we have

Y= (T\{t}H)(e(E)) (3.114)
Now, from (3.112), from (3.114), from (3.110), and from the definition of
type-explication, we have ¥ is type-explicit as required. O

Interestingly, Proposition 3.2.2 holds without any use of well-formedness
of type structures. The proposition relies in an essential way on the side-
conditions in the rules for where type signature expressions and on the re-
striction that sequential specifications cannot have overlapping domains.

The following corollary follows from Proposition 3.2.2 and from the rules
2.32 through 2.35.

46 CHAPTER 3. REASONING ABOUT MODML

Corollary 3.2.3 If B\ topdec = (T)(F, E) then F is type-explicit.

Proposition 3.2.2 and Corollary 3.2.3 justify why an explicit side-condition
about type-explicitness is not needed in rule 2.19 and in rule 2.20.

Chapter 4

Elaboration Dependence

In this chapter we demonstrate that, for the language ModML, elaboration
of a program phrase depends only on the part of the basis that describes
free identifiers of the phrase. More precisely, we show that elaboration of a
program in a given basis depends on assumptions in the basis for (1) free
long structure identifiers, (2) free long type constructors, (3) free long value
identifiers, and (4) free functor identifiers. This property is important for
separate compilation. Consider the program consisting of the two program
units A and B, where B depends on A:

(* Program unit A *) structure S = struct
val a = 5
val b = true
end

(* Program unit B *) val c = (S.b, 2)

In this example, program unit B refers only to the long value identifier S.b.
Now, if program unit A is modified, but still contains a component b of
type bool, then B need not be reelaborated, and depending on properties of
compilation, it may not need to be recompiled, either.

In SML’90 [MTHO0] elaboration of a program phrase depends not only
on assumptions for those identifiers that occur free in the phrase, but also
on assumptions for those identifiers that do not occur free in the phrase. In
the static semantics for SMI1.’90, when a program phrase phrase elaborates in
some basis B to a semantic object A then a requirement called admissibility

47

48 CHAPTER 4. ELABORATION DEPENDENCE

is enforced on the assembly of objects that occur in the proof of the sentence
B + phrase = A. Now, assume B’ is a larger basis than B (in the sense
that B’ associates assumptions to more identifiers but agrees with B on
assumptions for those identifiers that occur free in phrase) then admissibility
of the assembly of objects that occur in the proof of the sentence B’ +
phrase = A cannot be guaranteed. Further, the static semantics of SML’90
also requires that when a signature expression sigexp elaborates in some basis
B to a signature X then ¥ must be what is called a principal signature for
sigezp in B. Now, assume that B’ is a smaller basis than B (in the sense
that B’ associates assumptions to fewer identifiers but agrees with B on
assumptions for those identifiers that occur free in sigezp) then it cannot be
guaranteed that X is a principal signature for sigezp in B'.!

In the static semantics of SML’97 [MTHM97| the notions of admissibility
and principal signatures are eliminated. However, because of certain side
conditions in the semantic rules and because of the way generativity of type
names is enforced, one cannot restrict assumptions as expected. Recall, that
in SML’97 a context is a triple (7, U, E) of a set of type names, a set of
explicit type variables, and an environment. Elaboration is presented as a set
of inferences among sentences of which some are of the form C' + phrase = A,
where C' is a context such that tynames(E of C) C (T of C), phrase is a
phrase of the Core language and A is some semantic object. Now, in some
rules of the static semantics (more precisely, rule 4, rule 14, and rule 26),
side conditions require type names in some involved objects to be contained
in (T of C). Such inclusion requirements do not work well with restriction
of assumptions to those identifiers that occur free in the program phrase. In
particular, if a program phrase phrase elaborates in some context C' to an
object A then it is not possible to restrict the type name set component of
C' and demonstrate that phrase elaborates in the restricted context to the
object A. In the static semantics of ModML, generativity is modelled by
type abstraction and the static semantics is defined in such a way that no
inclusion requirements are necessary.

There are two reasons why it is not possible to determine what identifiers
occur free in a ModML program phrase without some information about the
basis in which the program phrase is elaborated. The first reason is the open
declaration; it is not possible to determine what identifiers occur free in a

!The reason that ¥ cannot be guaranteed to be a principal signature for sigezp in B’
has to do with cover [MTH90, Section 5.13].

49

program phrase without either restricting the use of the open declaration
or annotating the open construct with information about what identifiers
are declared by the declaration. The second reason is the support for simple
patterns; it is not always possible, from a program phrase alone, to determine
whether an identifier in a pattern is a value constructor or a value variable. In
the latter case the pattern binds the identifier, whereas in the former case, the
identifier occurs free in the program phrase. By annotating open declarations
with the set of declared identifiers and fn expressions with identifier status
information, it becomes possible to determine what identifiers occur free in
a program phrase.

The remainder of this chapter is organised as follows. In Section 4.1, we
define some operations for calculating with sets of identifiers. In Section 4.2
and Section 4.3, we define the notions of restriction and strong enrichment,
respectively. The definitions of restriction and strong enrichment are moti-
vated by the attempt to demonstrate the following property: If a ModML
program phrase elaborates under some assumptions B to an object A and if
B’ strongly enriches the assumptions B, restricted to those long identifiers
that occur free in the program phrase, then the program phrase elaborates
under assumptions B’ to the object A. This property does not hold for
ModML program phrases with free long structure identifiers in them. To see
why, consider the ModML program

open S
val f = a

and assume that the program is elaborated to an object A in a basis for which
the environment assumed for S has no value component a. Then, it does not
necessarily hold that the program elaborates to the object A in a basis for
which the environment assumed for S does have a value component a. Thus,
we define a notion of agreement in Section 4.4; to demonstrate the preceding
property, we must further require that B and B’ agree on assumptions for
those long structure identifiers that occur free in the program phrase. More-
over, we must also require that B and B’ agree on those value identifiers
(in the domains of B and B') with constructor identifier status. This last
requirement is necessary to deal correctly with identifiers in patterns.

In Section 4.5 through Section 4.7, we demonstrate elaboration depen-
dence for ModML program phrases. Finally, in Section 4.8, we suggest some
possibilities for refining elaboration dependence.

50 CHAPTER 4. ELABORATION DEPENDENCE

4.1 Identifiers

We have earlier grouped identifiers into classes. We now extend this classifi-
cation and classify an identifier as non-qualified, if it is in the set

Id = Funld U Strld U TyCon U VId
Further, we classify an identifier as long, if it is in the set

Longld = Funld U LongTyCon U LongStrld U LongVId

We use longz to range over long identifiers. The set of non-qualified identifiers
is a subset of the set of long identifiers.
The curtailment of a set of long identifiers L to a set of non-qualified
identifiers I, written L\ 1, is the set L\ (I U {strid.longz | strid € 1}).
Further, when L is a set of long identifiers, the qualifier of L, written
Qual(L), is the set

{strid | Jlongtycon s.t. strid.longtycon € L V
Jlongvid s.t. strid.longvid € L}

Proposition 4.1.1 If L' C L then Qual(L') C Qual(L).
ProOF Follows from the definition of qualifier. O

The projection of a set of long identifiers L to a structure identifier strid,
written L/strid, is the set

{longtycon | strid.longtycon € L} U {longvid | strid.longvid € L}

Proposition 4.1.2 If L' C L and strid € Qual(L') then (L'/strid) C
(L/strid).
PrROOF From assumptions, we have L' C L and strid € Qual(L’). Assume

strid.longz € L' for some longz. It suffices to show that if strid.longr € L
then longz € (L/strid); this follows from the definition of projection. O

We now define a function for extracting, from an environment (or a basis),
the set of long identifiers for which assumptions occur in the environment (or
basis). The function is defined inductively as follows:

Longlds(A) = (Dom AN (Funld U TyCon U VId)) U
{strid.longid | strid € (Dom A N Strld) A
longid € Longlds(A(strid))}

Intuitively, longz € Longlds(A) iff longz is not a long structure identifier and
there exists an object A’ such that A(longz) = A’

4.2. RESTRICTION 51

4.2 Restriction

The restriction of a finite map f to a set of identifiers A C Dom f, written
f 1 A, is the finite map with domain A and values (f | A)(z) = f(x).
Restriction is extended to environments as follows. Assume L be a set of
long identifiers. The restriction of an environment E = (SE, TE, VE) to L,
written E | L, is the environment (TE', SE', VE'), where

1. SE' = {strid — SE(strid) | (L/strid) | strid € Qual(L)}
2. TE' = TE | (L N TyCon)
3. VE' = VE | (LN VId)

Further, the restriction of a basis B = (F, E) to L, written B | L, is the
basis (F' | (L N Funld), E | L).

Proposition 4.2.1 If (L \ (LongStrld U Funld)) C Longlds(E) then there
exists an environment E' such that E' = E | L.

ProOOF By induction over the structure of E. O

4.3 Strong Enrichment

An environment E; = (SE,, TE,, VE,) strongly enriches another environ-
ment E2 = (SEQ, TEQ, VEQ), written E1 Q Ez, if

1. Dom SE; D Dom SE, and SE(strid) 3 SE(strid) for all strid €
Dom SE2

2. Dom TE; D Dom TE; and TE:(tycon) = TE;(tycon) for all tycon €
Dom TF,

3. Dom VE, D Dom VE,; and VE;(vid) = VEy(vid) for all vid €
Dom VE,

Moreover, a basis B; = (F, E)) strongly enriches another basis By = (Fy, Ey),
written Bl ; BQ, if

1. Dom F; D Dom F, and Fi(funid) = Fy(funid) for all funid € Dom Fj

92 CHAPTER 4. ELABORATION DEPENDENCE

2. By JE,

In the remainder of this section, we demonstrate a series of propositions
about the interaction between restriction and strong enrichment; the propo-
sitions are used, in the sections to follow, to demonstrate that elaboration of
a ModML program phrase depends only on assumptions for those identifiers
that occur free in the program phrase. We first show that if £’ is the result
of restricting an environment E to a set of long identifiers then E strongly
enriches E':

Proposition 4.3.1 If E'=F | L then E J E'.

ProoOF The proof is by induction on the structure of long identifiers in L.

Write E’ in the form (SE', TE', VE') and write F in the form (SE, TE, VE).
From the definition of restriction, we have

SE' = {strid — SE(strid) | (L/strid) | strid € Qual(L)} (4.1)

TE'= TE | (LN TyCon) (4.2)

VE'= VE | (LN VId) (4.3)

By induction and from (4.1) and from the definition of restriction, we have

Dom SE D Dom SE' and SE(strid) 3 SE'(strid)
for all strid € Dom SE' (4.4)

From (4.2) and from (4.3), we have
Dom TE D Dom TE' and TE(tycon) = TE'(tycon)

for all tycon € Dom TE' (4.5)
Dom VE 2 Dom VE' and VE(vid) = VE'(vid)
for all vid € Dom VE' (4.6)

Now, from the definition of strong enrichment and from (4.4), (4.5), and
(4.6), we have E J E', as required. a

Strong enrichment is closed with respect to environment modification
and restriction; if an environment E’ strongly enriches another environment
(E | (L\\ Dom Ej)), for some other environment E, and some set of long
identifiers L, then (E’ + Ej) strongly enriches (F + Ey) | L, provided the
restriction of (E + Ey) to L is defined. This proposition is essential so as
to demonstrate that elaboration dependence holds for program phrases that
declare identifiers, locally.

4.3. STRONG ENRICHMENT 93

Proposition 4.3.2 If E' J (E | (L\\ Dom E,)) and Longlds(E + Ey) 2
(L \ (LongStrld U Funld)) then (E' + Ey) 3 ((E + Ey) | L).

ProOF The proof is a straightforward non-inductive proof. Write E; =
(E | (L\ Dom Ey)), write E; in the form (SE,, TE,, VE,), and write E' in
the form (SE', TE', VE'). Further, write E in the form (SE, TE, VE) and
write Fy in the form (SEo, TEy, VE,). From the definition of restriction, we
have

SE, = {strid — SE(strid) | ((L\\ Dom SEg)(strid)) |

strid € Qual(L \\ Dom SE,)} (4.7)
TE, = TE | ((L\\ Dom TE,) N TyCon) (4.8)
VE, = VE | ((L\\ Dom VEy) N VId) (4.9)

From assumptions and the definition of strong enrichment, we have

Dom SE' D Dom SE, and SE'(strid) 3 SE(strid)

for all strid € Dom SE, (4.10)
Dom TE' D Dom TE, and TE'(tycon) = TE,(tycon)

for all tycon € Dom TFE, (4.11)
Dom VE' O Dom VE; and VE'(vid) = VE,(vid)

for all vid € Dom VE, (4.12)

From Proposition 4.2.1 and assumptions, we have there exists an environment,
E; = (E + Ep) | L. Write F] in the form (SE', TE|, VE}). From the
definition of restriction, we have

SE| = {strid — (SE + SE,)(strid) | (L/strid) | strid € Qual(L)¥4.13)
TE| = (TE + TE,) | (L N 'TyCon) (4.14)
VE| = (VE + VE,) | (LN VId) (4.15)

We have
((LNTyCon) \ Dom TE;) UDom TE, 2 LN TyCon

Thus, from the definition of curtailment and because Dom TE] = (L N
TyCon) follows from (4.14), we have

((L\\Dom TEy) N TyCon) UDom TE, 2 Dom TE (4.16)

o4 CHAPTER 4. ELABORATION DEPENDENCE

From (4.8) and from the definition of restriction, we have Dom TE, =
((L\\Dom TE,) N TyCon), hence, from (4.16), we have

Dom(TE; + TE,) 2 Dom TE/ (4.17)
Similarly, we have
Dom(VE; + VEy) 2 Dom VE; (4.18)

Now, assume tycon € Dom TE. From (4.14) and the definition of restric-
tion, we have TE| = (TE | (LNDom TE))+(TE, | (LNDom TEy)). It fol-
lows, that if tycon € (LNDom TE,) then (TE'+ TE)(tycon) = TE' (tycon).
Otherwise, if tycon € ((LNDom TE)\Dom TFE,) then we have TE' (tycon) =
TE (tycon), so from (4.8) it follows that TE'(tycon) = TE:(tycon) and from
(4.11) it follows that TFE'(tycon) = TE'(tycon). Thus, we have shown that

(TE' + TE,)(tycon) = TE' (tycon) for all tycon € Dom TE' (4.19)
Similarly, we have
(VE' + VE,)(vid) = VE',(vid) for all vid € Dom VE (4.20)

From the definitions of qualifier and curtailment, we have
Qual(L\ Dom SE;) U Dom SE, 2 Qual(L), thus, from (4.7) and
(4.13), we have

Dom(SE; + SEq) D Dom SE (4.21)
Now, assume strid € Dom SE’. From (4.13), we have

SE' = {strid — SE(strid) | (L/strid) | strid € Qual(L) \ Dom SE,} +
{strid — SE(strid) | (L/strid) | strid € Qual(L) N Dom SE,}(4.22)

It follows that if strid € Qual(L) N Dom SE, then we have from (4.22) that
there exists an environment Ej such that E| = SE(strid) | (L/strid). It
now follows from Proposition 4.3.1 that SEq(strid) 3 (SE, | (L/strid))
and because SEq(strid) = (SE' + SE;)(strid) it follows from (4.22) that
we have (SE' + SE,)(strid) 3 SE(strid). Otherwise, if strid € Qual(L) \
Dom SE, then we have from (4.10) that SE'(strid) 3 SE,(strid). Moreover,
we have (SE' + SEg)(strid) = SE'(strid) and from (4.7) and the definition

4.3. STRONG ENRICHMENT 95

of curtailment, we have SE;(strid) = SE(strid) | (L/strid). It follows that
we have (SE' + SE,)(strid) 3 SE'(strid), thus, we can conclude

(SE' + SE,)(strid) 3 SE'(strid) for all strid € Dom SE| (4.23)

Now, from the definition of strong enrichment and from (4.17), (4.18),
(4.19), (4.20), (4.21), and (4.23), we have (E' + Ey) 3 E', as required. O

The preceding proposition extends to bases as follows:

Proposition 4.3.3 If B’ J (B | (L \\ Dom By)) and Longlds(B + By) 2
(L \ LongStrld) then (B'+ By) 3 ((B+ By) | L).

ProOF Write B’ on the form (F’, E'), write B on the form (F, E), and
write By on the form (Fy, Ey). Further, let L' = (L\ Dom Fy) NFunld. From
assumptions and from the definitions of restriction and strong enrichment,
we have

Dom F' O L' and F'(funid) = (F | L')(funid)
for all funid € L' (4.24
E'3(E | (L Dom Ey)) (4.25

From assumptions, we have Longlds(F + Fy) U Longlds(E + Ey) 2 (L \
LongStrld), thus, from the definition of Longlds, we have

Dom(F + Fy) D (L N Funld) (4.26)
Longlds(E + Ep) O (L \ (LongStrld U Funld)) (4.27)

From (4.24) and from (4.26), we have

Dom(F' + Fy) O (L N Funld) and
(F' + Fy)(funid) = ((F + Fy) | (L N Funld))(funid)
for all funid € (L N Funld) (4.28)

Moreover, from Proposition 4.3.2, from (4.25), and from (4.27), we have
(E'+ Eo) 3 (E+ Eo) L L) (4.29)

Now, from (4.28) and (4.29) and from the definitions of restriction and strong
enrichment, we have (B’ + By) O ((B + By) | L), as required. O

The following proposition is essential for demonstrating elaboration de-
pendence for ModML program phrases that contain sub-phrases.

56 CHAPTER 4. ELABORATION DEPENDENCE

Proposition 4.3.4 IfE' J(E | L) and L' C L then E' J (E | L').

PrOOF The proof is by induction on the structure of E. Let £y = E | L.
Write E' in the form (SE', TE', VE'), write E in the form (SE, TE, VE), and
write Fy in the form (SEq, TEq, VE,). From the definition of restriction, we
have

SEo = {strid — SE(strid) | (L/strid) | strid € Qual(L)} (4.30)
TE, = TE | (L N TyCon) (4.31)
VE, = VE | (LN VId) (4.32)

Moreover, from the definition of strong enrichment, we have

Dom SE' D Dom SEq and SE'(strid) 3 SEq(strid)

for all strid € Dom SE, (4.33)
Dom TE' D Dom TE, and TE'(tycon) = TE(tycon)

for all tycon € Dom TE, (4.34)
Dom VE' D Dom VE, and VE'(vid) = VE(vid)

for all vid € Dom VE, (4.35)

Now, let E” = E | L' and write E” in the form (SE", TE", VE"). From the
definition of restriction, we have

SE" = {strid — SE(strid) | (L'/strid) | strid € Qual(L")} (4.36)
TE" = TE | (L' N TyCon) (4.37)
VE" = VE | (I' 0 VId) (4.38)

From assumptions and from Proposition 4.1.2, we have
(L'/strid) C (L/strid) for all strid € Qual(L') (4.39)
Moreover, from (4.30), from (4.32), and from Proposition 4.1.1, we have
SE'(strid) 3 (SE(strid) | (L/strid) for all strid € Qual(L') (4.40)

From (4.39) and (4.40), we can now apply induction for each strid € Qual(L’)
to get

SE'(strid) 3 (SE(strid) | (L'/strid) for all strid € Qual(L') (4.41)

4.3. STRONG ENRICHMENT o7

Thus, from (4.30), (4.36), and (4.41), we have

Dom SE' O Dom SE" and SE'(strid) 3 SE"(strid)
for all strid € Dom SE" (4.42)

Also, because Dom TE"” C Dom TE, and Dom VE” C Dom VE,, it follows
from (4.31), (4.32), (4.34), (4.35), (4.37), and (4.38) that

Dom TE' D Dom TE" and TE'(tycon) = TE"(tycon)

for all tycon € Dom TE" (4.43)
Dom VE' D Dom VE" and VE'(vid) = VE"(vid)
for all vid € Dom VE" (4.44)

Now, from the definition of strong enrichment and from (4.42), (4.43), and
(4.44), we have E' J E"| as required. a

The preceding proposition extends to bases:
Proposition 4.3.5 If B J (B | L) and L' C L then B'J (B | L').
ProoOF Write B’ in the form (F’, E') and write B in the form (F, E). From
the definitions of restriction and strong enrichment, we have

Dom F' D Dom(F | (L N Funld)) and
F'(funid) = (F | (L N Funld))(funid)
for all funid € (L N Funld) (4.45)
E'DJ(ELL) (4.46)

From assumptions and from (4.45), we have

Dom F' D (L' N Funld) and F'(funid) = (F | (L' N Funld))(funid)
for all funid € (L' N Funld) (4.47)

Moreover, from (4.46) and from Proposition 4.3.4, we have
E'J(ElL) (4.48)

Now, from the definitions of restriction and strong enrichment and from
(4.47) and (4.48), we have B’ J (B | L'), as required. O

The following proposition is essential for demonstrating elaboration de-
pendence for ModML program phrases that refer to assumptions for long
type constructors or for long value identifiers.

58 CHAPTER 4. ELABORATION DEPENDENCE

Proposition 4.3.6 If E' J (E | L) and longz € (L N (LongTyCon U
LongVId)) then E'(longz) = E(longz).

PrOOF The proof is by induction over the structure of longxr. There are
two cases.

If longz € (TyCon U VId), it follows immediately from definitions of
restriction and strong enrichment that E'(longz) = E(longz), as required.

Otherwise, there exist a structure identifier strid and a long identifier
longz' such that longr = strid.longz’. From the definitions of restriction and
strong enrichment, we have E'(strid) J (E(strid) | (L/strid)). Moreover,
from assumptions and from the definition of projection, we have longz’ €
((L/strid)N(LongTyConULongVId)). It follows that we can apply induction
to get (E'(strid))(longz') = (E(strid))(longz'), hence, we have E'(longz) =
E(longz), as required. O

The preceding proposition extends to bases:

Proposition 4.3.7 If B' 1 (B | L) and longz € (LN (FunldULongTyConU
LongVId)) then B'(longz) = B(longz).

PROOF There are two cases.

If longz € Funld, it follows immediately from the definitions of restriction
and strong enrichment that B'(longz) = B(longz), as required.

Otherwise, we have longz € (LongTyCon N LongVId). From the defi-
nitions of restriction and strong enrichment and from Proposition 4.3.6, we
have B'(longz) = B(longz), as required. O

4.4 Agreement

The set of value constructors of an environment FE, written Cons(FE), is
defined as
Cons(E) = {vid | 3o s.t. E(vid) = (o,¢)}

An environment E; agrees with another environment Fy w.r.t. a set of
long identifiers L, written E; = FEs, iff E;(longstrid) = Es(longstrid) for
all longstrid € L and Cons(E;) = Cons(E,). Further, a basis B; = (F1, E})
agrees with another basis By = (Fy, Fy) w.r.t. a set of long identifiers L,
written By =~ B, iff £} =~ F>.

4.5. CORE DEPENDENCE 99

4.5 Core Dependence

The functions for finding free and declared identifiers are defined by mu-
tual recursion. The notations fid(phrase) = L and decl(phrase) = I are
overloaded and used for all phrases phrase. For the Core language, only
declarations declare identifiers, hence, we define decl(phrase) = I only when
phrase is a declaration.

Type Expressions fid(ty) = L
fid(ty, -> ty,) = fid(ty,) U fid(ty,) (4.49)
fid(tyvar) = 0 (4.50)
fid(tyseq longtycon) = {longtycon} U (4.51)
fid(ty,) U - - - Ufid (ty;)
where tyseq = ty, - - - ty, (4.52)

Proposition 4.5.1 If E+ ty = 7 then Longlds(E) D fid(ty).

ProOF By induction over the structure of ¢y. O

The following proposition states that elaboration of a type expression
depends only on assumptions for those long identifiers that occur free in the
type expression.

Proposition 4.5.2 (Type expression dependence) If £+ ty = 7 and
E' 1 (FE | fid(ty)) then E'+ty = 7.

PROOF The proof is by induction over the structure of ty and proceeds by
case analysis.

‘CASE ty = ty, —> tyQ‘ From assumptions and from rule 2.1, we have

Ebty, =n (4.53)
EFty,=m (4.54)
T=T =T (4.55)

From assumptions, from (4.49), and from Proposition 4.3.4, we have

E' D (E | fid(ty,)) (4.56)
E' 2 (E | fid(ty,)) (4.57)

60 CHAPTER 4. ELABORATION DEPENDENCE

We can now apply induction twice to (4.53) and (4.56), and to (4.54) and
(4.57) to get

E'Fty, =n (4.58)
E'Fty,=mn (4.59)

From rule 2.1 and from (4.58), (4.59), and (4.55), we have E' - ty = 7, as
required.

‘CASE ty = tyvar‘ From assumptions and from rule 2.2, we have E' +
tyvar = «, as required.

‘CASE ty = tyseq longtycon‘ Write tyseq in the form ty, - --ty,. From as-
sumptions and from rule 2.3, we have

E(longtycon) = (6%, VE) (4.60)
Er-ty, =7, 1=1.k (4.61)
T = (11, +,7%)0F (4.62)

From assumptions, from (4.60), from (4.51), and from Proposition 4.3.6, we
have

E'(longtycon) = (0%, VE) (4.63)

From assumptions, from (4.51), and from Proposition 4.3.4, we have
E' 3 (E | fid(ty;)), i=1..k (4.64)

We can now apply induction & times to (4.61) and (4.64) to get

E'Fty,=m, i=1.k (4.65)
From (4.65), from (4.63), from (4.62) and from rule 2.3, we have E' - ty = 7,
as required. O
Expressions fid(ezp) = L
fid(longvid) = {longvid} (4.66)
fid(fn" vid => exp) = fid(ezp) \ {vid} (4.67)
fid(£fn° longvid => exp) = fid(exp) U {longvid} (4.68)
fid(exp, exp,) = fid(ezp,) U fid(ezp,) (4.69)
fid(let dec in exp end) = fid(dec) U (fid(ezp) \\ decl(dec)) (4.70)

4.5. CORE DEPENDENCE 61

Declarations fid(dec) = L
fid(open’ longstrid) {longstrid} (4.71)

fid(val vid = exp) = fid(exp) (4.72)

fid(type tyvarseq tycon = ty) = fid(ty) (4.73)

fid(datatype tyvarseq tycon = vid) = 0 (4.74)

decl(dec) =1

) = T (475)
decl(val vid = exp) = {wvid} (4.76)

decl(type tyvarseq tycon = ty) = {tycon} (4.77)
) = {tycon,vid} (4.78)

decl(open’ longstrid

decl(datatype tyvarseq tycon = vid

Proposition 4.5.3 If E + dec = (T)E' then Longlds(E) O (fid(dec) \
LongStrld) and decl(dec) = Dom E'. Also, if E = exp = 7 then Longlds(E) D
(fid(ezp) \ LongStrld).

PrROOF By induction over the structure of dec and ezp. O

The following proposition states that elaboration of expressions and dec-
larations depends on assumptions for those long identifiers that occur free in
the phrase. Agreement is used to express that elaboration depends on the
assumptions for free long structure identifiers of the phrase and on the set of
value identifiers with constructor status in the assumptions.

Proposition 4.5.4 (Core dependence) Let phrase be either an expression
or a declaration and let A be either a type or a signature. If E F phrase = A
and E' 3 (E | fid(phrase)) and E' Rga(phrase) E then E' = phrase = A.

PROOF The proof is by induction over the structure of phrase.

‘CASE erp = longvid‘ From assumptions and from rule 2.4, we have
E(longvid) = (0,1is) and o > 7, hence, from Proposition 4.3.6, from assump-
tions, and because fid(longvid) = {longvid}, we have E'(longvid) = (o, is).
Thus, we have from rule 2.4 that E' - longvid = 7, as required.

62 CHAPTER 4. ELABORATION DEPENDENCE

CASE ezp = fn' vid => exp’| From assumptions and from rule 2.5, we have

vid ¢ Dom FE or is of E(vid) =v (4.79)
E+ Eybexp' =1 (4.80)
Erep=1—>1 (4.81)
Ey = {vid — (1,v)} (4.82)
From the definition of agreement and from (4.79), we have
vid ¢ Dom E' or is of E'(vid) =v (4.83)

From (4.67), from the definition of curtailment, and from (4.82), we have
fid(ezp) = fid(ezp’) \ Dom E, (4.84)
Now, from Proposition 4.5.3 and from (4.80), we have
Longlds(E + Ey) 2 (fid(ezp') \ (LongStrld U Funld)) (4.85)

From Proposition 4.3.2, from assumptions, and from (4.84) and (4.85), we
have

(B + Eo) 3 ((E + By) | fid(exy')) (4.86)
Moreover, from assumptions and from the definition of agreement, we have
(E' + Eb) ®fd(erp') (B + Ep) (4.87)

By applying induction to (4.80), (4.86), and (4.87), we have
E'+Eyt exp' = 7' (4.88)

Now, from rule 2.5 and from (4.83), (4.82), and (4.88), we have E' - exp =
T — 7', as required.

CASE ezp = let dec in ezp’ end| From assumptions and from rule 2.8, we
ave

E+ dec = (T)E" (4.89)
E+E'"Fexp' = (4.90)
T N (tynames(E, 7)) = () (4.91)

4.5. CORE DEPENDENCE 63

By renaming of bound names of (T')E”, we can assume
T N (tynames(E', 7)) = () (4.92)
From (4.70) and from Proposition 4.5.3, we have
fid(ezp) = fid(dec) U (fid(ezp’) \ Dom E") (4.93)
Now, from assumptions and from (4.93) and from Proposition 4.3.4, we have
E' 3 (E | fid(dec)) (4.94)
Moreover, from assumptions and from the definition of agreement, we have
E' ®ga(dec) B (4.95)
We can now apply induction to (4.89), (4.94), and (4.95) to get
E'+ dec = (T)E" (4.96)
From assumptions, from (4.93), and from Proposition 4.3.4, we have
E' 1 (E | (fid(ezp’) \ Dom E")) (4.97)
Moreover, from (4.90) and from Proposition 4.5.3, we have
Longlds(E + E") D (fid(ezp’) \ LongStrld) (4.98)

Now, from Proposition 4.3.2, from (4.97) and (4.98), and because no functor
identifiers occur free in Core-level expressions, we have

(E'+ E") 3 ((E + E") | fid(exp')) (4.99)

Further, it follows from assumptions, from (4.93), and from the definition of
agreement that

(E'+ E") Xgd(eapr) (E + E") (4.100)
We can now apply induction to (4.90), (4.99), and (4.100) to get

E'+E'Fexp' =71 (4.101)

64 CHAPTER 4. ELABORATION DEPENDENCE

From rule 2.8 and from (4.96), (4.92), and (4.101), we have E' - ezp = T,
as required.

CASE dec = val wvid = e:cp‘ From assumptions and from rule 2.9, we have

Eremp=rT (4.102)
tyvars a®) N tyvars £ = () (4.103)
¥ = (0){vid — (Va'¥).7,v)} (4.104)
By renaming of bound names of Vo!¥).7, we can assume
tyvars o¥) N tyvars E' = () (4.105)

From (4.72), we have fid(dec) = fid(ezp), hence we can apply induction to
(4.102) to get

E'Femp=r (4.106)

It now follows from rule 2.9 and from (4.105), (4.104), and (4.106) that
E'+ dec = X, as required.

CASE dec = open’ longstrid| From assumptions and from rule 2.12, we
have E(longstrid) = E" and Dom E” = I and F + dec = (@)E". From
assumptions, from (4.71), and from the definition of agreement, we have
E'(longstrid) = E", thus, from rule 2.12, we have E' + dec = (0)E", as
required.

The proofs for the remaining cases are similar. O

4.6 Signature Dependence

Also specifications declare identifiers, hence, we also define decl(spec) = I.

Specifications fid(spec) = L
fid(val vid : ty) fid(ty) (4.107)

fid(type tyvarseq tycon) = 0 (4.108)

fid(datatype tyvarseq tycon = vid) = 0 (4.109)
fid(spec, specy) = fid(specy) U (4.110)

(fid(specy) \\ decl(spec,))
fid(e) = 0 (4.111)

4.6. SIGNATURE DEPENDENCE 65

decl(spec) =1

decl(val vid : ty
decl(type tyvarseq tycon

{vid} (4.112)
= {tycon} (4.113)
= {tycon, vid} (4.114)
= decl(spec,) U

decl(spec,) (4.115)

decl(datatype tyvarseq tycon = vid

— N’ N’ S

decl(spec, spec,

decl(e) = 0 (4.116)
Signature Expressions fid(sigezp) = L
fid(sig spec end) = fid(spec) (4.117)

fid(sigexp where type tyvarseq = ty) = fid(sigexp) U fid(ty) (4.118)

Proposition 4.6.1 If B - spec = (T)E then Longlds(B) D fid(spec) and
decl(spec) = Dom E. Also, if B + sigexp = (T)E then Longlds(B) D
fid(sigezp).

Proor By induction over the structure of spec and sigexp. O

Elaboration of signature expressions and specifications depends on as-
sumptions for those long identifiers occurring free in the phrase.

Proposition 4.6.2 (Signature dependence) Let phrase be either a spec-
ification or a signature expression. If B & phrase = ¥ and B' 1 (B |
fid(phrase)) then B't phrase = 3.

PROOF The proof is by induction over the structure of phrase. We show
two of the cases.

‘CASE spec = specy speCQ‘ From assumptions and from rule 2.17, we have

Dom E; N Dom E, = () (4.119)
Bt spec, = (T1)Ey (4.120)

(Ty UT,) N tynames B = () (4.121)
B+ E; F specy = (1) Ey (4.122)
Ty N (11 U tynames E;) = () (4.123)
S = (T, UT) (Ey + Es) (4.124)

66 CHAPTER 4. ELABORATION DEPENDENCE

From assumptions and from (4.110), we have
B' 1 (B | (fid(spec;) U (fid(specy) \\ decl(specy)))) (4.125)
Now, from Proposition 4.3.5 and from (4.125), we have

B' 1 (B | fid(spec,)) (4.126)
B' 3 (B | (fid(specy) \\ decl(spec,))) (4.127)

Thus, we can now apply induction to (4.120) and (4.126) to get
B'F spec, = (Th) Ey (4.128)

From Proposition 4.6.1 and from (4.120), we have decl(spec,;) = Dom Ej,
hence from (4.127), we have

B' 1 (B | (fid(spec;) \\ Dom Ej)) (4.129)

Now, from Proposition 4.6.1 and from (4.122) and because no long structure
identifiers occur free in specifications, we have

Longlds(B + E1) D (fid(spec,) \ LongStrld) (4.130)
Moreover, from Proposition 4.3.3, from (4.129), and from (4.130), we have
(B'+ E1) 3 (B + Ey) | fid(specy)) (4.131)
We can now apply induction to (4.122) and (4.131) to get
B' + E\ F specy, = (12) Es (4.132)
By appropriate renaming of bound names of ¥, we can assume
(T1 UT5) N tynames B' = () (4.133)

From rule 2.17 and from (4.119), (4.128), (4.133), (4.132), (4.123), and
(4.124), we have B' | spec = 3, as required.

CASE sigexp = sigezp’ where type tyvarseq longtycon = ty| From assump-
tions and from rule 2.20, we have

Bt sigexp’ = (T)E (4.134)

4.6. SIGNATURE DEPENDENCE

T Ntynames B = ()
tyvarseq = ak)
Eot BFty=r1
E(longtycon) = (t, VE)
teT
o = {t = Aa®).1}

X = (T)(p(E))

From assumptions and from (4.118), we have
B' 2 (B | (fid(sigesp’) U fid(ty)))
It follows from Proposition 4.3.5 and from (4.142) that we have

B' 3 (B | fid(sigezp))
B' 1 (B | fid(ty))

We can now apply induction to (4.134) and (4.143) to get

B'+ sigexp’ = (T)E

(4.143)
(4.144)

(4.145)

Moreover, from the definitions of restriction and strong enrichment and from

(4.144), we have
(E of B)) 2 ((E of B) | fid(ty))
Thus, from Proposition 4.5.2 and from (4.146), we have
Eof BrFty=r
By appropriate renaming of bound names of X, we can assume

T N tynames B’ = ()

(4.146)

(4.147)

(4.148)

We now have from rule 2.20 and from (4.145), (4.148), (4.136), (4.147),
(4.138), (4.139), (4.140), and (4.141) that B' b sigerp = X, as required.

The proofs for the remaining cases are similar.

|

68 CHAPTER 4. ELABORATION DEPENDENCE

4.7 Module Dependence

Both structure-level declarations and top-level declarations may declare iden-
tifiers, hence, we define decl(phrase) = I for both of these phrase classes.

Structure-level Expressions fid(strexp) = L

fid(struct strdec end) = fid(strdec) ()
fid(longstrid) = {longstrid} ()
fid(strezp : sigexp) = fid(strezp) U fid(sigezp) (4.151)

) (4.152)

) (4.153)

fid(strexp :> sigexp) = fid(strezp) U fid(sigezp)

fid(funid (strezp)) = {funid} U fid(strezp) 4.153
Structure-level Declarations fid(strdec) = L
fid(dec) = fid(dec) (4.154)
fid(structure strid = strexp) = fid(strezp) (4.155)
fid(strdec, strdeco) = fid(strdec;) U (4.156)

(fid(strdecy) \\ decl(strdecy))
fide) = 0 (4.157)

decl(strdec) = I

decl(dec) = decl(dec) (4.158)

decl(structure strid = strezp) = {strid} (4.159)
decl(strdecy strdecy) = decl(strdeci) U

decl(strdecs) (4.160)

decl(e) = 0 (4.161)

Proposition 4.7.1 If B+ strdec = (T)E then Longlds(B) 2 (fid(strdec) N
LongStrld) and decl(strdec) = Dom E. Also, if B + strexp = (T)E then
Longlds(B) D (fid(strezp) N LongStrld).

4.7. MODULE DEPENDENCE 69

ProOF By induction over the structure of strdec and strezxp. O

The following proposition states that elaboration of structure-level ex-
pressions and structure-level declarations depends on assumptions for those
long identifiers occurring free in the phrase.

Proposition 4.7.2 (Module dependence) Let phrase be either a struc-
ture declaration or a structure expression. If B & phrase = X and B' J (B |
fid(phrase)) and B' Ra(phrase) B then B'F phrase = X.

PRrROOF The proof is by induction over the structure of phrase.

‘CASE strexp = longstrid‘ From assumptions and from rule 2.24, we have

B(longstrid) = E (4.162)

From assumptions and from (4.150), we have B’ R{ongstria} B, hence, from
the definition of agreement and from (4.162), we have B'(longstrid) = E. It
follows from rule 2.24 that we have B’ - longstrid = () E, as required.

CASE strexp = strexp’ : sigexp‘ From assumptions and from rule 2.25, we
have

Bt strezp = (T)E (4.163)
B = sigexp = X' (4.164)
Y >E <E (4.165)
T N tynames B = () (4.166)
S = (T)E' (4.167)

By appropriate renaming of bound names of ¥, we can assume
T N tynames B' = () (4.168)

From (4.151), we have

fid(strexp) = fid(strexp') U fid(sigezp) (4.169)

Moreover, from Proposition 4.3.5 and from assumptions and from (4.169),
we have
B' I (B | fid(strezp')) (4.170)
B' 1 (B | fid(sigezp) (4.171)

70 CHAPTER 4. ELABORATION DEPENDENCE

Also, it follows from assumptions and the definition of agreement that
B' Xga(streap’y B (4.172)
We can now apply induction to (4.163), (4.170), and (4.172) to get
B'+ strezp’ = (T)E (4.173)
Further, from Proposition 4.6.2 and from (4.164) and (4.171), we have
B' + sigexp = X' (4.174)

It now follows from rule 2.25 and from (4.173), (4.174), (4.165), (4.168), and
(4.167) that we have B' | strexp = X3, as required.

‘CASE strexp = funid (strexp’) ‘ From assumptions and from rule 2.27, we
have

Bt strezp’ = (T)E (4.175)
B(funid) > (E", (T")E') (4.176)
E s E" (4.177)
(T UT") Ntynames B = () (4.178)
S =(TUT)E (4.179)

By appropriate renaming of bound names of ¥, we can assume
(T UT")Ntynames B' =) (4.180)

From (4.152), we have

fid(strexp) = {funid} U fid(strezp’) (4.181)

Now, from Proposition 4.3.5 and from assumptions and from (4.181), we have
B' 1 (B | fid(strezp’)) (4.182)

Moreover, from assumptions and from the definition of agreement and from
(4.181), we have

B’ ~fid (strezp’) B (4183)

4.7. MODULE DEPENDENCE 71

We can now apply induction to (4.175), (4.182), and (4.183) to get
B'+ strezp’ = (T)E (4.184)

Also, from Proposition 4.3.7, from assumptions, and from (4.181), we have
B'(funid) = B(funid), hence from (4.176), we have

B'(funid) > (E",(T")E") (4.185)

It follows from rule 2.27 and from (4.184), (4.185), (4.177), (4.180), and
(4.179) that B' F strexp = X, as required.

‘CASE strdec = dec‘ From assumptions and from rule 2.28, we have

EtF dec =X (4.186)
B = (F,E) (4.187)

Let B' = (F', E'). From assumptions and from (4.154) and from the defini-
tions of restriction and strong enrichment, we have

E' 3 (E | fid(dec)) (4.188)

Moreover, from assumptions and the definition of agreement, we have
E' ~gd(dec) E (4.189)
Now, from Proposition 4.5.4 and from (4.186), (4.188), and (4.189), we have
E' dec = ¥ (4.190)

From rule 2.28 and from (4.190), we have B’ |- strdec = X, as required.

CASE strdec = strdecq strdecg‘ From assumptions and from rule 2.30, we
have

Bt strdec; = (T1)E; ()
B + E; + strdecy = (T2)Es ()
(Ty UT,) N tynames B = () (4.193)
Ty N (Ty U tynames E;) = () ()
Y= (TyUTY)(E, + E) ()

72 CHAPTER 4. ELABORATION DEPENDENCE

By renaming of bound names of ¥, we can assume
(T1 UT5) N tynames B' = () (4.196)

From Proposition 4.7.1 and from (4.191), we have decl(strdec;) = Dom Ej,
hence from (4.156), we have

fid(strdec) = fid(strdecy) U (fid(strdecs) \\ Dom Ej) (4.197)
Now, from Proposition 4.3.5 and from assumptions and from (4.197), we have

B' 3 (B | fid(strdec;)) (4.198)
B' 1 (B | (fid(strdecy) \ Dom E})) (4.199)

Moreover, from assumptions and from (4.197) and from the definition of
agreement, we have

B’ ®fq(strdecr) B (4.200)
We can now apply induction to (4.191), (4.198), and (4.200) to get
B' & strdec; = (11)E; (4.201)
Now, from Proposition 4.7.1 and from (4.192), we have
Longlds(B + E1) D (fid(strdecs) \ LongStrld) (4.202)
From Proposition 4.3.3 and from (4.199) and (4.202), we have
(B'+ Ey) 3 ((B+ Ey) | fid(strdecs)) (4.203)

Moreover, from assumptions and from (4.197) and from the definitions of
agreement and curtailment, we have

(B' 4+ E1) ~fd(strdecs) (B + E1) (4.204)
We can now apply induction to (4.192), (4.203), and (4.204) to get
B' + Ey F strdecy = (T3) Es (4.205)

From rule 2.30 and from (4.201), (4.196), (4.205), (4.194), and (4.195), we
have B' I strdec = X, as required.
The proofs for the remaining cases are similar. O

4.7. MODULE DEPENDENCE 73

Top-level Declarations fid(topdec) = L
fid(strdec) = fid(strdec) (4.206)
fid(functor funid (strid : sigexp) = fid(sigezp) U (4.207)
= strezp) (fid(strexp) \ {strid})
fid(topdec, topdec,) = fid(topdec,)U (4.208)
(fid(topdec,) \ decl(topdec,))
fide) = 0 (4.209)

decl(topdec) = I

decl(strdec) = decl(strdec) (4.210)

decl(functor funid (strid : sigexp) = {funid} (4.211)
= strezp)
decl(topdec, topdec,) = decl(topdec,)U (4.212)
decl(topdec,)
decl(e) = 0 (4.213)

Proposition 4.7.3 If B+ topdec = (T)B' then Longlds(B) D (fid(topdec)\
LongStrld) and decl(topdec) = Dom B'.
ProOOF By induction over the structure of topdec. O

Elaboration of top-level declarations depends on assumptions for those
long identifiers that occur free in the phrase.

Proposition 4.7.4 (Top-level dependence) If B+ topdec = (T')B" and
B' 1 (B | fid(topdec)) and B' Xa(topdec) B then B' = topdec = (T)B".

PrOOF The proof is by induction over the structure of topdec and proceeds
by case analysis.

‘CASE topdec = strdec| From assumptions and from rule 2.32, we have
B + topdec = (T)({},E) and B F strdec = (T)E. From (4.206), we
have fid(topdec) = fid(strdec), hence, from assumptions and from Proposi-
tion 4.7.2, we have B' I strdec = (T)E, hence, from rule 2.32, we have
B'+ topdec = (T)({}, E), as required.

74 CHAPTER 4. ELABORATION DEPENDENCE

‘CASE topdec = functor funid (strid : sigexp) = strexp| From assump-
tions and from rule 2.33, we have

B\ sigexp = (T)E ()

T N tynames B = () ()

B + {strid — E} b strezp = % (4.216)
F = {funid — (T)(E,X) ()
B+ topdec = (0)(F,{}) ()

By appropriate renaming of bound names of (T')E, we can assume
T N tynames B’ = () (4.219)
From (4.207), we have
fid(topdec) = fid(sigezp) U (fid(strezp) \ {strid}) (4.220)
From Proposition 4.3.5, from assumptions, and from (4.220), we have

B' 1 (B | fid(sigezp)) (4.221)
B' 3 (B | (fid(strezp) \\ {strid})) (4.222)

Now, from Proposition 4.6.2, from (4.214), and from (4.221), we have
B' + sigexp = (T)E (4.223)
From Proposition 4.7.3 and from (4.216), we have
Longlds(B + {strid — E}) D (fid(strezp) \ LongStrld) (4.224)
Moreover, from Proposition 4.3.3, from (4.222), and from (4.224), we have
(B'+ {strid — E}) 3 ((B + {strid — E}) | fid(strezp)) (4.225)

From the definitions of agreement and curtailment, from assumptions, and
from (4.220), we have

(B' + {strid — E}) Rga(streap) (B + {strid — E}) (4.226)
Now, from Proposition 4.7.2 and from (4.216), (4.225), and (4.226), we have

B' + {strid — E} I strezp = % (4.227)

4.7. MODULE DEPENDENCE 75

From rule 2.33 and from (4.223), (4.219), (4.227), and (4.217), we have B’ -
topdec = (0)(F,{}), as required.

CASE topdec = topdec, topdec,| From assumptions and from rule 2.34, we
have

B\ topdec, = (T1)E; ()

(Ty UT,) N tynames B = () ()

B + B, - topdec, = (12)E, (4.230)
Ty N (T} U tynames By) = () ()
Bt topdec = (Ty UTy)(By + Bs) ()

By appropriate renaming of bound names of (77 U T3)(B; + B,), we can
assume

(Ty U T,) N tynames B' = () (4.233)
From (4.208), from Proposition 4.7.3, and from (4.228), we have
fid(topdec) = fid(topdec,) U (fid(topdec,) \\ Dom By) (4.234)
Now, from Proposition 4.3.5, from assumptions, and from (4.234), we have

B' O (B | fid(topdec,)) (4.235)
B' 3 (B | (fid(topdecy) \ Dom By)) (4.236)

Moreover, from assumptions, from (4.234), and from the definition of agree-
ment, we have

B ~fid(topdec,) B (4237)
We can now apply induction to (4.228), (4.235), and (4.237), to get
B' F topdec, = (11)B; (4.238)

From Proposition 4.7.3 and from (4.230), we have Longlds(B + B;) 2
(fid(topdec,) \ LongStrld), hence, from Proposition 4.3.3 and from (4.236),
we have

(B'+ B1) 3 ((B+ By) | fid(topdec,)) (4.239)

76 CHAPTER 4. ELABORATION DEPENDENCE

Moreover, from assumptions, from (4.234), and from the definitions of agree-
ment and curtailment, we have

(B, -+ Bl) %ﬁd(topdecz) (B + Bl) (4240)
We can now apply induction to (4.230), (4.239), and (4.240), to get
B' + By - topdec, = (15)Bs (4.241)

Now, from rule 2.34 and from (4.238), (4.233), (4.241), (4.231), and (4.232),
we have B' + topdec = (T1 U T»)(B; + Bs), as required.

‘ CASE topdec = 6‘ From rule 2.35, we have B' ¢ = (0)({}, {}), as required.
]

4.8 Refinement of Elaboration Dependence

There seem to be a number of ways in which to improve elaboration depen-
dence. Consider the program

local structure S = A
in val a = S.j
end

This program depends only on assumptions for the long value identifier A. j,
but elaboration dependence suggests that the program depends on assump-
tions for A. This means that a separate compilation system based on elab-
oration dependence, as we have defined it here, will force more files to be
reelaborated (and thus recompiled) than necessary.

Another problem is the special care that we must take to ensure that
the identifier status for free value identifiers in patterns do not change; if
the set of top-level value constructors is changed for some program unit
then all program units that depends on it must be reelaborated (and thus
recompiled). From a language design point of view, it has been suggested
elsewhere [Mac92, App93| to make it possible to distinguish syntactically
between value variables and value constructors (e.g., by requiring constructor
variables to start with an uppercase letter); such an approach is taken by
Haskell and Prolog. If it is possible to distinguish syntactically between value
variables and value constructors then the notion of identifier status can be
eliminated from the static semantics; elaboration dependence can thus be
simplified, as well.

Chapter 5

From Opaque to Transparent
Modules

In ModML, there are two mechanisms by which the implementation of a
type constructor can be hidden by the programmer — by functor abstraction
and by using opaque signature constraints. In Chapter 8, we demonstrate
that it is possible to translate ModML programs that do not contain opaque
signature constraints into an explicitly typed intermediate language called
IntML, by flattening structures and specialising ModML functors for each
application. The IntML language has no notion of Modules and neither does
it support abstract types.

In this chapter, we present a translation for eliminating opaque signa-
ture constraints in ModML program phrases by translating opaque signature
constraints into transparent signature constraints. This means that a com-
piler can compile ModML, including opaque signature constraints, into the
explicitly typed intermediate language IntML. Although the translation is
straightforward, it is not trivial to demonstrate that the translation pre-
serves elaboration. The main problem is that generativity is affected by the
translation. Consider the functor declaration

functor f() = struct type a = int end :> sig type a end

and let By = {int — (tix,{})}, where ty,; is a type name with arity O.
Then the functor declaration for f elaborates, in the basis By, to a program
signature that contains the functor signature

@) {3 {tHfa = & {H})

7

78 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

for £, where ¢ is a type name with arity 0. The functor declaration translates
into the functor declaration

functor f() = struct type a = int end : sig type a end

which, in the basis By, elaborates to a program signature that contains the
following functor signature for f:

@)} @12 = (i, {1)})

In this case, generativity (or type abstraction) has decreased (i.e., after the
translation, the type constructor a is known to stand for the type denoted
by the type name t;y.)

As another example, consider the functor declaration

functor g() = struct datatype a = A
type b = a
end :> sig type a type b end

which elaborates, in the empty basis, to a program signature containing the
functor signature

@) {3} (&t {a = @ {}), = (. {}})

for g, where ¢ and ¢’ are type names with arity 0. The functor declaration
translates into the functor declaration

functor g() = struct datatype a = A
type b = a
end : sig type a type b end

which elaborates, in the empty basis, to the program signature containing
the following functor signature for g:

@O){} {tH){a = ¢, b= (6{D})

where ¢ is a type name with arity 0. Again, the translation decreases gener-
ativity (or type abstraction).

As a final example illustrating a decrease in generativity, consider the
functor declaration

79

functor h(s : sig type a end) =
struct type b = s.a end :> sig type b end

This functor declaration elaborates, in the empty basis, to a program signa-
ture containing the functor signature

{tH({a = & {D} {#'H{p— ¢ {H})

for h, where ¢ and t' are type names with arity 0. The functor declaration
translates into the functor declaration

functor h(s : sig type a end) =
struct type b = s.a end : sig type b end

which elaborates, in the empty basis, to a program signature containing the
functor signature

{tH{a= &N} O — & {H})

where ¢ is a type name with arity 0. Also in this case, the translation de-
creases generativity.

It is not always the case, however, that the translation decreases genera-
tivity (or type abstraction). In fact, the translation may increase generativity.
Consider the functor declaration

functor i() = struct datatype a = A
and b = B

type c = a -> b

end :> sig type c end

which elaborates, in the empty basis, to a program signature containing the

functor signature
M {3 {e = & {DH})

where t is a type name with arity 0. The functor declaration translates into
the functor declaration

1]
=

functor i() = struct datatype a
and b
type c = a -> b

end : sig type c end

]
(o o]

80 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

which elaborates, in the empty basis, to a program signature containing the
functor signature!

@} {6 e = (M)t = 1,{}H})

where ¢ and ¢’ are type names with arity 0.

The remainder of this chapter is organised as follows. In Section 5.1,
we present the translation called opacity elimination for translating opaque
signature constraints into transparent ones. Then, in Section 5.2 — inspired
by the previous discussion — we present a relation called abstraction. In
Section 5.3, we demonstrate that opacity elimination preserves elaboration,
under assumptions related by abstraction. In Section 5.4, we discuss why a
well-formedness requirement in the elaboration rule for where type signature
expressions is problematic for opacity elimination.

5.1 Opacity Elimination

The translation translates module phrases, which may contain opaque signa-
ture constraints, into module phrases that do not contain opaque signature
constraints. We write the translation on the form oe(phrase) = phrase’,
where phrase is the module phrase before the translation and phrase’ is the
resulting module phrase.

Structure-level Expressions oe(strexp) = strexp’

oe(struct strdec end) = struct oe(strdec) end (5.1)
oe(longstrid) = longstrid (5.2)

oe(strexp : sigerp) = oe(strezp) : sigexp (5.3)

oe(strexp :> sigexp) = oe(strezp) : sigexp (5.4)

oe(funid (strexp)) = funid (oe(strezp)) (5.5)
Structure-level Declarations oe(strdec) = strdec’'
oe(dec) = dec (5.6)

IThe result signature of a functor signature need not be type explicit.

5.2. ABSTRACTION 81

oe(structure strid = strexp) = structure strid = oe(strezp) (5.7)
oe(strdecy strdecs) = oe(strdecy) oe(strdecs) (5.8)
oe(e) = ¢
Top-level Declarations oe(topdec) = topdec'
oe(strdec) = oe(strdec) (5.10)
oe(fun;tor funid (strid : _ functo.r funid (strid : (5.11)
sigexp) = strexp) sigexp) = oe(strezxp)
oe(topdec, topdec,) = oe(topdec,) oe(topdec.) (5.12)
oe(e) = € (5.13)

The only interesting equation is (5.4), which translates an opaque signature
constraint into a transparent signature constraint.

In the following sections, we demonstrate that elaboration is preserved un-
der opacity elimination in the sense that if a program elaborates under some
assumptions B then the translated program elaborates under assumptions
that are related to B. This relation, between bases in which the program
and the translated program elaborate, was justified in the beginning of this
chapter.

5.2 Abstraction

A signature ¥; abstracts another signature 3 = (7T3)Ey, written 3; > Yo,
iff ¥; > FE, and tynames 3; N7, = (). Signature abstraction is essentially
the same as signature instantiation, as defined in [MTH90, Section 5.9]. The
following proposition states that signature abstraction is closed under reali-
sation:

Proposition 5.2.1 (Signature abstraction is closed under realisa-
tion) If ¥; = X, then (1) = ¢(32) for any realisation .

PROOF Let ¢ be any realisation and let ¥y = (T%)E5 such that

T, N (Supp ¢ U Yield) = () (5.14)

82 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

From the definition of signature abstraction, we have

T, N tynames 3; = () (5.15)
S > B (5.16)

Now, from Proposition 3.1.3 and from (5.16), we have

o(X1) 2 o(E2) (5.17)

It follows from (5.14) and from (5.15) that we have T, Ntynames(¢(X;)) = 0,
hence, from (5.17), from (5.14), and from the definition of signature abstrac-
tion, we have ¢(X;) = ¢(X,), as required. O

We extend the notion of abstraction as follows. A functor signature
&, = (T1)(E1, %) abstracts another functor signature &y = (Ty)(FE2, X9),
written ®; > ®,, iff T = T, and F; = Ey and ; > Y,. Further, a functor
environment F; abstracts another functor environment F,, written F; > Fy,
iff Dom F; = Dom F, and Fi(funid) > Fy(funid), for all funid € Dom Fj.
Moreover, a basis By = (Fi, E;) abstracts another basis By = (F3, Es), writ-
ten By > By, iff F; = F, and E; = E,. Finally, a program signature (71)B;
abstracts another program signature (15)Bs, written (77)B; > (13)Bs, iff
there exists a realisation ¢ such that (1) Supp ¢ C 71, (2) ¢(B1) = Bs, and
(3) Ty N tynames((71)B,) = 0.

In Section 4.6 we found that elaboration of signature expressions de-
pends on only those identifiers that occur free in the signature expression.
As a consequence, elaboration of signature expressions is closed under ab-
straction. Moreover, in Section 2.12 we found that elaboration of signature
expressions is closed under realisation. These two properties, about elabora-
tion of signature expressions, lead to the following proposition:

Proposition 5.2.2 If B & sigexp = X and ¢(B) > B’ then B' & sigexp =
p(¥)-
PROOF From Proposition 3.1.10 and from assumptions, we have
©(B) F sigexp = p(X) (5.18)

Let B = (F,E) and let B' = (F',E'). From assumptions and from the
definition of abstraction, we have

p(F) = F (5.19)

o(E) = E' (5.20

5.3. PRESERVATION OF ELABORATION 83

From Proposition 4.6.1 and from (5.18), we have Longlds(¢(B)) 2
fid(sigezp). Because fid(sigezp) N Funld = (), it follows that

Longlds(¢(E)) 2 fid(sigezp) (5.21)

Now, from Proposition 4.2.1 and from (5.21), we have that there exists an
environment F, such that

Ey = (p(E)) | fid(sigezp) (5.22)

Moreover, from Proposition 4.3.1 and from (5.22), we have E' J ((¢(E)) |
fid(sigezp)). It follows from the definitions of restriction and strong enrich-
ment and because fid(sigezp) N Funld = () that we have

B' 3 ((¢(B)) | fid(sigezp)) (5.23)
From Proposition 4.6.2 and from (5.18) and (5.23), we have B’ - sigezp =
¢(X), as required. O

5.3 Preservation of Elaboration

We shall now see that elaboration of any module phrase is preserved under
opacity elimination. This property is stated in the following proposition:

Proposition 5.3.1 (Preservation of elaboration) Let phrase be either
a structure-level expression, a structure-level declaration, or a top-level dec-
laration. If B - phrase = A and ¢(B) = B’ then there erists a semantic
object A’ such that p(A) = A’ and B' - oe(phrase) = A'.

PROOF The proof is by induction over the structure of phrase. The proof
proceeds by case analysis; there is one case for each applicable elaboration
rule. The proofs for the cases corresponding to rule 2.23, rule 2.29, rule 2.31,
rule 2.32, and rule 2.35 follow either immediately or immediately by induc-
tion. The proofs for the remaining cases follow.

CASE strexp = longstrz'd‘ From assumptions and rule 2.24, we have

B(longstrid) = E (5.24)
B+ strezp = (0)E

84 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

From assumptions, from the definition of abstraction, and from (5.24), we
have B'(longstrid) = @(FE). Let ¥’ = @((0)E). It follows from rule 2.24
and from (5.2) that B' F oe(strerp) = ¥'. Now, from the definition of
abstraction, we have ¢((0)E) > X', as required.

‘CASE strexp = strexp’ : sigexp‘ From assumptions and from rule 2.25, we
have

Bt strexp’ = (T)E (5.25)
B+ sigezp = X (5.26)
S>E <E (5.27)
B\ strexp = (T)E' (5.28)
T N tynames B =) (5.29)

Because of side condition (5.29), we can assume that the bound names of
(T')E' have been chosen such that

T N (Supp ¢ U Yield ¢ U tynames B') = () (5.30)

From assumptions we have ¢(B) > B’, hence from (5.25), we can now apply
induction to get there exists a signature ¥; = (77)F; such that

(T)(p(E)) = % (5.31)
B'+ oe(strezp’) = ¥4 (5.32)

We are free to choose the bound names of ¥; such that
T, N (tynames B’ U tynames(p((T)E"))) =0 (5.33)

From (5.31) and from the definitions of abstraction and signature instantia-
tion, we have that there exists a realisation ¢’ such that

(¢ o p)(E) = Ey (5.34)
Supp o' CT (5.35)
Ty N tynames((T)(p(E))) = 0 (5.36)

From Proposition 3.1.7 and from (5.27) and (5.34), we have

(¢'op)(E') < Ex (5.37)

5.3. PRESERVATION OF ELABORATION 85

Moreover, from Proposition 3.1.3 and from (5.27), we have

(¥ 0 9) () > (¢ o ¢)(E') (5.38)
Further, from Proposition 5.2.2 ,from assumptions, and from (5.26), we have
B'F sigezp = (¢' 0 ¢) (%) (5.39)

Now, let X' = (T1)((¢' o ¢)(E")). From rule 2.25 and from (5.32), (5.39),
(5.38), (5.37), (5.30), and (5.3), we have B’ oe(strezp) = 3. Also, from
the definitions of abstraction and signature instantiation and from (5.30), we
have p((T)E) = ¥, as required.

CASE strexp = strexp’ :> sigexp| From assumptions and from rule 2.26, we
ave

Bt strezp’ = (T)E (5.40)
B |- sigexp = % (5.41)
> E <E (5.42)

T N tynames B =) (5.43)
Bt strezp = X (5.44)

From Proposition 3.1.10 and from (5.30), we have
tynames X C tynames B (5.45)

Because of side condition (5.43) and from (5.45), we can assume that 7" has
been chosen such that

T N (Supp ¢ U Yield ¢ U tynames B') = () (5.46)

From assumptions we have ¢(B) > B’, hence from (5.40), we can now apply
induction to get there exists a signature ¥; = (77) F; such that

(T)(p(E)) = (5.47)

B' F oe(strezp') = ¥4 (5.48)

From (5.47) and from the definitions of abstraction and signature instantia-
tion, we have that there exists a realisation ¢’ such that

(¢' 0o 9)(E) = Ex (5.49)
Supp ¢' CT (5.50)
Ty N tynames((T)(p(E))) = 0 (5.51)

86 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

By appropriate renaming of bound names of ¥;, we can further assume that
T N tynames p(X) =0 (5.52)

From Proposition 3.1.7 and from (5.42) and (5.49), we have
(¢' 0 9)(E") < E, (5.53)

Moreover, from Proposition 3.1.3 and from (5.42), we have
(0 9)(E) > (¢ 0 0)(E) (5.54)
Further, from Proposition 5.2.2, from assumptions, and from (5.41), we have
B't sigexp = (¢' o p)(X) (5.55)

Now, let X' = (T1)((¢' o ¢)(E")). From rule 2.25 and from (5.48), (5.55),
(5.54), (5.53), (5.46), and (5.3), we have

B'\- oe(strezp) = X'

We must now demonstrate that ¢(3) = ¥'. Let ¥ = (T")E’. By appro-
priate renaming of bound names of 3, we can assume

T'NT =10 (5.56)

From (5.54) and from the definitions of abstraction and signature instantia-
tion, we have that there exists a realisation ¢” such that

Supp ¢" CT' (5.57)
(" o' 0 p)(E) = (¢ 0 p)(E") (5.58)

Moreover, from (5.45), from (5.56), and from (5.43), we have tynames E' N
T = (), hence from (5.46), we have

tynames(p(E"))NT = (5.59)
Now, from (5.50) and from (5.59), we have

("o @) (E) = (¢ 0) (E") (5.60)

5.3. PRESERVATION OF ELABORATION 87

It follows from the definition of signature instantiation, from (5.60), and from
(5.50) that we have

p(X) = (¢' o p)(E") (5.61)

Finally, from the definition of abstraction, from (5.61), and from (5.52), we
have p(X) = X', as required.

‘CASE strexp = funid (strexp’) ‘ From assumptions and from rule 2.27, we
have

Bt strexp’ = (T)E (5.62)

® > (E",(T')E) (5.63)
B(funid) = ® (5.64)

E = E" (5.65)
(T"UJT)Ntynames B =0 (5.66)
S =(TUT)E' (5.67)

B strezp = X (5.68)

Because of side condition (5.66), we can assume that the bound names of ¥
have been chosen such that

(T UT")N (tynames B’ U Supp ¢ U Yield p) =0 (5.69)

From assumptions and from (5.62), we can apply induction to get there exists
a signature 3; = (71)E; such that

(T)(p(E)) = % (5.70)
B't oe(strezp’) = ¥4 (5.71)

By appropriate renaming of bound names of ¥;, we can assume
Ty N (tynames B’ U tynames(p(2)) =0 (5.72)

From (5.70) and from the definitions of signature instantiation and abstrac-
tion, we have that there exists a realisation g such that

Supp o C T (5.73)

(po o 9)(E) = E (5.74)
T, N tynames((T)(¢(E))) =0 (5.75)

88 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

Moreover, from assumptions and from the definition of abstraction and from
(5.64),we have that there exists a functor signature ®' such that

p(®) = @' (5.76)
B'(funid) = @' (5.77)

Now, let ® = (Tp)(Ey, Xp) and let &' = (13)(E», X5). From (5.76) and from
the definition of abstraction, we have

To =Ty (5.78)
P(Ey) = Ey (5.79)
e(Xp) = 55 (5.80)

From Proposition 3.1.4 and from (5.63) and (5.69), we have

p(®) = (p(E"), (T")(p(E"))) (5.81)

From (5.81) and from the definition of functor signature instantiation, we
have that there exists a realisation ¢; such that

Supp 1 C Ty (5.82)
(10 9)(Eo) = p(E") (5.83)
(p109)(Zp) = (T")(p(E")) (5.84)

From (5.78), from (5.79), we have ® = (Tp)(p(Fy), X5), hence from (5.82),
from (5.83), and from the definition of functor signature instantiation, we
have

"> (p(E"), 91(X5)) (5.85)

Moreover, from Proposition 3.1.4 and from (5.85), (5.69), (5.73), and (5.77),

we have

@' > ((wo 0 ©)(E"), (@0 0 ¢1)(%3)) (5.86)

From (5.65) and from Proposition 3.1.7, we have (¢o0 ¢)(E) = (¢oop)(E"),
hence from (5.74), we have

Ey >~ (po 0 ¢)(E") (5.87)

5.3. PRESERVATION OF ELABORATION 89

Now, let X, = (73)EY,. By appropriate renaming of bound names of ¥, we
can assume

T N (Supp(o © 1) U Yield(pg 0 1)) = 0 (5.88)
T4 N (tynames B’ U tynames(¢(X))) =0 (5.89)

From (5.86), (5.88), and (5.77), we have

B'(funid) = ((vo © ¢)(E"), (13)((0 © ¢1)(E3))) (5.90)

Let X' = (11 UT3)((¢o © 1) (E})). From rule 2.27, from (5.71), from (5.90),
from (5.87), and from (5.5), we have

B' + oe(strezp) = X (5.91)

We must now show ¢(X) = ¥'. From Proposition 5.2.1, from (5.80), and
from (5.84), we have

(T")(p(E")) = p1(3) (5.92)

Now, from (5.88), from (5.92), and from the definitions of signature instan-
tiation and abstraction, we have that there exists a realisation (5 such that

Ty N tynames((T")(o(E"))) =0 (5.93)
Supp 2 CT" (5.94)
(w2 0 0)(E') = 1 (E3) (5.95)

From (5.95), we have (ggope0¢)(E') = (poop1)(ES). Now, from (5.69), from
(5.67), from the definition of signature instantiation, and because Supp(¢g o
p2) C (T'"UT) follows from (5.94) and (5.73), we have

P(X) = (po o ¥1)(By) (5.96)
Moreover, from (5.89) and from (5.72), we have
(Ty UTy) Ntynames(o(X)) =0 (5.97)

From (5.96) and from (5.97) and from the definition of signature abstraction,
we have ¢(X) > ¥, as required.

90 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

‘CASE strdec = dec‘ From assumptions and from rule 2.28, we have

E of B dec = X (5.98)

From assumptions and from the definition of abstraction, we have
¢(E of B) = E of B’', hence, from Proposition 3.1.9 and from (5.98), we
have (E of B') - dec = ¢(X). It follows from rule 2.28 and from (5.6) that
B' - oe(strdec) = ¢(X). From the definition of abstraction, it follows that
©(X) = ¢(X), as required.

‘ CASE strdec = strdec; strdecs ‘ The proof for this case is similar to the proof
for the case where topdec = topdec, topdec,.

‘CASE topdec = functor funid (strid : sigexp) = strexp| From assump-
tions and from rule 2.33, we have

B\ sigezp = (T)E (5.99)

T N tynames B = () (5.100)

B + {strid — E} \- strezp = % (5.101)
F = {funid — (T)(E,X)} (5.102)

By appropriate renaming of bound names, we can assume
T N (tynames B" U Supp ¢ U Yield) =0 (5.103)

From Proposition 5.2.2, from assumptions, from (5.99), and from (5.103), we
have

B' + sigexp = (T)(¢(E)) (5.104)

It follows from assumptions and from the definition of abstraction that we
have

©(B 4+ {strid — E}) = (B' + {strid — ¢(F)}) (5.105)

We can now apply induction to (5.101) and (5.105) to get there exists a
signature ¥’ such that

(B' + {strid — @(FE)}) F oe(strezp) = X (5.106)
o(5) = 3 (5.107)

5.3. PRESERVATION OF ELABORATION 91

From (5.102), from (5.107), and from the definition of abstraction, we have

e(F) = F' (5.108)
F' = {funid — (T)(p(E), ')} (5.109)

Now, from rule 2.33 and from (5.104), (5.103), (5.106), and (5.109), we have
B' + oe(topdec) = (0)(F",{}). Moreover, from (5.108) and from the defini-
tion of abstraction, we have ¢((0)(F,{})) = (0)(F',{}), as required.

CASE topdec = topdec, topdec,| From assumptions and from rule 2.34, we
have

B\ topdec, = (T1) B (5.110)
(Ty UT,) N tynames B = () (5.111)
B + By F topdec, = (T,)Bs (5.112)
TQ N (T1 U tynames Bl) = @ (5113)
By appropriate renaming of bound names of (77)B;, we can assume
Ty N (Supp ¢ U Yield ¢) =0 (5.114)

From assumptions and from (5.110), we can apply induction to get there
exists a program signature (77)B] such that

B' + oe(topdec,) = (T7)Bj (5.115)
o((11)By) = (T7) By (5.116)

By appropriate renaming of bound names of (77) B}, we can assume

T} N tynames B’ = () (5.117)
T N tynames(o((T1 UT2)(B1 + By))) =0 (5.118)

From the definition of abstraction, from (5.116), and from (5.114), we have
that there exists a realisation ¢; such that

Supp ¢1 € Th (5.119)
(p109)(B1) = B (5.120)
T} N tynames((T1)(¢(B1))) = 0 (5.121)

92 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

By appropriate renaming of bound names of (73) By, we can assume
T, N (Supp(p1 © @) U Yield(p1 0 ¢)) =0 (5.122)

From (5.114), (5.111), and (5.119), we have (1 0¢)(B) = ¢(B), hence, from
assumptions, we have

(pro9)(B) = B (5.123)

Now, from the definition of abstraction and from (5.120) and (5.123), we
have

(p109)(B+ Bi) = (B' + Bi) (5.124)

We can now apply induction to (5.112) and (5.124) to get there exists a
program signature (73)B} such that

(010 0)((T2) B2) = (15) By (5.125)
(B" + B}) F oe(topdec,) = (T3) B, (5.126)

By renaming of bound names of (7%)B), we can assume
y 2)Dag,

Ty N (T] U tynames B}) = 0 (5.127)
Ty N tynames B' = () (5.128)
Ty N tynames(o((T1 U T3)(B1 + By))) =0 (5.129)

From rule 2.34 and from (5.115), (5.117), (5.128), (5.126), (5.127), and (5.12),
we have

B't oe(topdec) = (T} U T,) (B, + B)) (5.130)

We must now show that ¢((71 UTy)(B1 + Bs)) = (1] UTy)(B] + B}). From
(5.125), from (5.122), and from the definition of abstraction, we have that
there exists a realisation ¢, such that

Supp ¢z € T> (5.131)
(p20p10¢)(B2) = By (5.132)
Ty N tynames((73)((¢1 0 ¢)(Be))) = 0 (5.133)

5.4. WELL-FORMEDNESS 93

Now, from (5.113), (5.122), and (5.131), we have (@2 0 @1 0 9)(B;) = (¢1 0
©)(By), hence, from (5.120), we have

(p20p100)(B1) = B (5.134)
From (5.132), from (5.134), and from the definition of abstraction, we have
(p2 091 0¢)(B1 + By) = (B] + B) (5.135)
It follows from (5.119) and (5.131) that we have
Supp(pz 0 1) C (T1 UTh) (5.136)
Moreover, from (5.118) and from (5.129), we have
(T UTy) N (p((TL UTy)(By + By))) =0 (5.137)

Now, from the definition of abstraction and from (5.135), (5.136), and
(5.137), we have o((T1 U Ty)(B1 + By)) = (I7 U T3) (B} + B)), as required.
O

5.4 Well-Formedness

In this section, we shall see that if signature expressions are required to elab-
orate to well-formed signatures (see Section 2.11 on page 19 for the definition
of well-formedness) then opacity elimination does not preserve elaboration.
The crucial point is the rule for elaborating where type signature expres-
sions. In SML’97, this rule contains a side condition saying that the resulting
signature be well-formed. Consider the SML.’97 program

structure S = struct type s = int -> int
end :> sig type s end

signature SIG = sig datatype u = A end
where type u = S.s

This program elaborates under SML’97 and it also elaborates under ModML,
provided, ModML is extended to allow for signature declarations. However,
elaboration of the preceding program under SML’97 is not closed under opac-
ity elimination; the program

94 CHAPTER 5. FROM OPAQUE TO TRANSPARENT MODULES

structure S = struct type s = int -> int
end : sig type s end

signature SIG = sig datatype u = A end
where type u = S.s

does not elaborate under SML’97, because the signature
((Z)){u = (A()-tint — tinta {A — tint — tint})}

is not well-formed.

For ModML (again, extended to allow for signature declarations), elab-
oration is closed under opacity elimination. Technically, the problem with
requiring well-formedness of the resulting signature, in the rule for where
type signature expressions, is that the requirement destroys the property
that elaboration of signature expressions and specifications is closed under
realisation.

As discussed in Section 2.12, no real structure (i.e., a structure existing
outside of a functor body) can match a non-well-formed signature. Thus,
leaving out the well-formedness requirement in rule 2.20 does not contribute
to unsoundness of the static semantics. Because a well-formedness require-
ment in rule 2.20 only restricts what signature expressions elaborate, we can
enforce such a check in an implementation — without compromising sound-
ness.

5.5 Complete Elimination of Abstract Types

In this chapter, we have seen that the translation of opaque signature con-
straints into transparent signature constraints preserves elaboration under
related assumptions. Besides this property being reasonable for a language
design point of view, the property makes it possible to eliminate type abstrac-
tion in the intermediate language of a compiler, by further specialisation of
functors, as we shall demonstrate in Chapter 8.

An interesting aspect of the proof, that opacity elimination preserves
elaboration, is that the proof is constructive and thus outlines how type
information is updated if opacity elimination is performed on an explicitly
typed intermediate representation of the program.

Part 11

Compiling Program
Components

95

Chapter 6

Cut-Off Incremental
Recompilation

A mechanism for separate compilation is essential for a programming envi-
ronment. Several different schemes for providing separate compilation were
discussed in the introduction. In this chapter, we present a framework for
separate compilation that we call cut-off incremental recompilation.

A compiler translates program units of some source language to program
units in some target language.! This mapping from source program units
to target program units is often best described—and implemented—as the
composition of a series of translation steps where each translation step maps
an intermediate representation of the source program unit into another in-
termediate representation of the source program unit.

Each source program unit may contain free identifiers that refer to dec-
larations in other program units. Thus, compilation is defined with respect
to a so-called basis that provides assumptions for free identifiers of a source
program unit. In most frameworks for separate compilation, assumptions
for free identifiers of a program unit stem from interfaces for those program
units on which the program unit depends.? Interfaces may either be gener-

In most Standard ML compilers a source program unit is a sequence of top-level
declarations contained in a file on the underlying operating system. The Definition of
Standard ML [MTHMO97] defines a program to be a sequence of top-level declarations
and thus does not provide any solution to how programs are organised on the underlying
operation system.

2 As discussed in Section 1.2, smartest recompilation [SA93] builds up assumptions for
free identifiers in a program unit from each of the free occurrences of an identifier, thus,

97

98 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

ated by the compiler when program units are compiled or provided by the
programmer. Systems that allow the programmer to provide such interfaces
are said to support cut-off separate compilation because the system thus
has a mechanism for compiling a program unit without first compiling those
program units on which the program unit depends. However, for a system
to be reasonably useful, there is a limit to the amount of type information a
programmer can provide in interfaces. Thus, in systems that support cut-off
separate compilation, there is a limit to the amount of information for op-
timisations and analyses that can be propagated across those program unit
boundaries for which interfaces are provided by the programmer.

On the other hand, if interfaces are generated by the compiler then it
is possible to use different calling conventions, say, for those identifiers that
are declared by a program unit. More important, some analyses and optimi-
sations depend critically on information about identifiers of other program
units. Region inference is an example of one such analysis; without informa-
tion about region type schemes for free identifiers, region inference becomes
too conservative.

To allow for information about declared identifiers of any intermediate
representation of a program unit to propagate to intermediate representa-
tions of other program units, we define a basis to be the product of envi-
ronments for each translation step in the compiler. Then, each environment
provides assumptions for free identifiers of the intermediate program unit for
the corresponding translation step. Informally, the result of translating an
intermediate program unit p; is a pair of a new intermediate program unit
pir1 (possibly, a target program unit) and an environment that maps each
declared identifier of p; to information appropriate for the ith translation
step. Thus informally, the result of compiling a source program unit is a pair
of a target program unit and a basis.

We do not assume that there is a one-to-one correspondence between iden-
tifiers at the level of source program units and identifiers (generated names)
at other levels of translation (e.g., machine code labels at the level of target
program units.) Instead, translation environments may maintain a mapping
from names of some level to names of the next level; this feature allows the
framework to be used with Standard ML and its generative treatment of
datatypes, for instance.

The framework that we present is simple because we want to study its

for smartest recompilation assumptions do not stem from interfaces.

6.1. TRANSLATION ENVIRONMENTS 99

properties; the framework does not build on any tool for finding dependencies
between source program units [Blu97, Chapter 4|, although, in principle it
could. Instead, we assume that the programmer provides a program as a
sequence of source program units; informally, the meaning of the program
is then the meaning of the program that would arise by concatenating the
sequence of program units. To avoid recompiling a program unit when it has
not been modified and when the assumptions under which the program unit
was last compiled have not changed, the framework has a notion of repository
for holding compilation results of compiled program units.

The framework supports cut-off incremental recompilation because com-
pilation of a sequence of program units that form a program must be per-
formed incrementally and because a program unit need not necessarily be
recompiled if program units on which it depends have been recompiled. The
framework builds on properties of each translation step in a compiler. We de-
scribe the framework by assuming a translation function for each translation
step in a compiler and by assuming a set of properties of each translation
step. Based on these properties, we demonstrate soundness and complete-
ness of the separate compilation framework. Soundness expresses that if a
project compiles to some result in some repository that satisfy certain well-
formedness conditions then the same project compiles to the same result in
an empty repository. Similarly, completeness expresses that if a project com-
piles to some result in an empty repository then the same project compiles
to the same result in any well-formed repository.

In the following sections, we introduce the notion of translation steps
and state the properties that must hold for each translation step so as to
demonstrate correctness of the separate compilation framework. We then
proceed to describe how translation steps are composed to form the notion of
compilation. In Section 6.5, we present the separate compilation framework.
In Section 6.6, we demonstrate soundness and completeness of the separate
compilation framework.

6.1 Translation Environments

We assume a denumerably infinite set Name of names, ranged over by n. For
simplicity, we assume that source program identifiers are members of Name.
The set of all subsets of Name is written NameSet and we use N to range
over NameSet. When A is any object, we write names A to mean the set of

100 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

names that occur free in A; we assume that what free means is defined for
actual objects used in the framework.

A (translation) environment E for a translation step in the compiler is a
finite map from names to translation objects; we use to to range over trans-
lation objects for some translation step, but we shall not define translation
objects here, as such objects are specific for actual translation steps. How-
ever, we assume a notion of equality on translation objects; when to; and
to, are translation objects, we write to; = toy iff to; equals to,. The set
of names that occur free in an environment F, written names F, is the set
Dom E U names(Ran E).

We now define a relation on environments called strong enrichment:?

Definition 6.1.1 (Strong enrichment) An environment E; strongly en-
riches another environment Fs, written £ O Es, iff Dom F; O Dom E, and
Ei(n) = Ey(n) for all n € Dom Ej. a

Strong enrichment is reflexive, transitive, and antisymmetric, thus, for a
given translation step in the compiler, strong enrichment defines a partial
order on environments. Recall that the restriction of a finite map £ to a set
N C Dom E, written £ | N, is the finite map with domain N and values
(El N)(z)=FE(x) forallz € N.

6.2 Translation Steps

We use p to range over program units (of some translation step) of the com-
piler. When p is a program unit, we write uses p to mean the set of names
that appear as uses in p and we write decls p to mean the set of names that
are declared by p; declared names of a program unit do not alpha-vary.

In our framework, each translation step is assumed to be given on the
form

Etp= (N)(Ep)

where F and E' are environments, p is a source program unit for the trans-
lation step, p' is a target program unit for the translation step, and N is the
set of names that are generated during translation. Sentences of this form
are read “p translates to (N)(E',p') in E.” The prefix (N) in the object

3The term “strong enrichment” stem from the strong enrichment relation in Chapter 4.

6.3. COMPILATION BASES 101

(N)(E',p') binds names and we consider objects of this form equal up to
renaming of bound names.

The framework assumes a set of properties be met. First, each translation
step is assumed to be closed under strong enrichment:

Property 6.2.1 (Translation is closed under strong enrichment) If
Erp= (N)(E',p)and E" J(E | uses p) then E" +p= (N)(E',p). O

This property guarantees that the translation step depends only on those
assumptions for which identifiers occur free in the program unit to be trans-
lated; it is this property that allows the result of compiling a program unit
to be reused. Informally, the requirement E” J (E | uses p) expresses that
E and E' agree on all uses in p.

Second, used names of a target program unit of a translation step are
assumed to stem from propagating uses of the source program unit of the
translation step through the translation environment:

Property 6.2.2 (Usage propagation) If E+ p = (N)(E',p’) then uses p’ C
names(Ran(E | uses p)). O

This property states that if some translation step translates a program unit
p to another program unit p’ then there is a connection between the uses of
p and the uses of p’; we shall return to the importance of this property in
Section 6.4.

Finally, each translation step is assumed to be deterministic:

Property 6.2.3 (Translation is deterministic) If £ +p = (N;)(E1,p1)
and F + p = (NQ)(EQ,pQ) then (Nl)(Elapl) = (NQ)(EQ,pQ). a

It is this property that guarantees completeness of the separate compilation
framework.

6.3 Compilation Bases

For the purpose of composing translation steps to form a notion of compila-
tion, we first define a notion of compilation basis. A (compilation) basis B
is a sequence F.---.FE, of one or more translation environments. The trans-
lation environment F;, 1 <7 < n, in this sequence provides assumptions for

102 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

the 7th translation step in the compiler. The set of names that occur free in
B, written names B, is the set names(E7) U ... Unames(E,).

Strong enrichment is extended to bases. A basis B = E. - --.E, strongly
enriches another basis B’ = E}.---.E], written B J B, if E; J E] for all
ie{l,---,n}.

Strong enrichment on bases is reflexive, transitive, and antisymmetric.
These properties follow from the properties of strong enrichment on environ-
ments. It follows that strong enrichment on bases defines a partial order on
bases.

The restriction of a basis B to a name set N, written B |} NV, is defined
inductively by the following equations:

EYN = E|N (6.1)
(E.B)UN = (E|N).(B{ (names(Ran(E | N)))) (6.2)

Equation 6.2 is best illustrated with a small example. Consider the basis
B = E,.E, composed by the two environments E; = {a +— t,b — s,c — t}
and Ey = {t — l,s — o}, where a, b, ¢, s, t, [1, and [y are names. Then the
restriction of B to the name set {a} is the basis {a — t}.{t — [, }.

We now demonstrate some properties, which describe the relationship
between strong enrichment and restriction.

Proposition 6.3.1 If B3 (B'J N) and N' C N then B (B' | N').

Proor The proof is by induction on the structure of bases.

|CasE B = E| The result follows from assumptions and from the definitions
of strong enrichment and restriction on environments.

|CASE B = E.B"| Write B’ in the form E'.B". From assumptions and from
the definitions of strong enrichment and restriction, we have

EJ(E" | N) 6.3)
B" 1 (B" || names(Ran(E’ | N))) (6.4)

From the definitions of strong enrichment and restriction on environments
and from (6.3), we have

EJ(E N (6.5)

6.3. COMPILATION BASES 103
and because names(Ran(E£’ | N')) C names(Ran(E’ | N)) follows from
N' C N, we can apply induction to (6.4) to get

B" J(B" || names(Ran(E' | N'))) (6.6)

Now, from (6.5), from (6.6), and from the definitions of strong enrichment
and restriction, we have B 1 (B’ |} N'), as required. a

The following proposition states that, provided B; and By both are the
identity with respect to restriction to some name set N, if B strongly enriches
both By and B, then B; equals Bs.

Proposition 6.3.2 If B J B, and B J By and By = B; | N and By =
B2 U N then Bl = BQ.

Proor The proof is by induction on the structure of bases.

|CasE B = E| For this case, the result follows directly from the definitions
of strong enrichment and restriction on environments.

|Case B = E.B'| It follows from assumptions and from the definitions of

strong enrichment and restriction that there exist environments F; and Ej
and bases B} and B;, such that B; = E;.B] and B, = FE,.B!, and

EJE (6.7)

EJE (6.8)

B 1B (6.9)

B 1B, (6.10)

Ei=E LN (6.11)

By=E, LN (6.12)

B} = B |} (names(Ran(E; | N))) (6.13)
B} = B/ |} (names(Ran(E; | N))) (6.14)

From the definitions of strong enrichment and restriction on environments

and from (6.7), (6.8), (6.11), and (6.12), we have

Moreover, we can apply induction to (6.9), (6.10), (6.13), and (6.14) to get
B] = B, thus, from (6.15), we have B; = By, as required. a

104 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

We now show that if some basis B strongly enriches another basis By and
if By is the identity with respect to restriction to some name set N then By
equals B restricted to V.

Proposition 6.3.3 If B By and By = By |} N then By = B || N.

Proor The proof is by induction on the structure of bases.

|CasE B = E| For this case the result follows directly from the definitions
of strong enrichment and restriction.

‘CASE B=EDB ‘ It follows from assumptions and from the definitions of
strong enrichment and restriction that there exist an environment Ej and a

basis By, such that By = Ey.Bj|, and

EDJE, (6.16)

B' 1 Bj (6.17)

Ey=FEg LN (6.18)

Bj = B} || (names(Ran(E, | N))) (6.19)

From the definitions of strong enrichment and restriction on environments
and from (6.16) and (6.18), we have

Eg=E|lN (6.20)

Now, from the definition of restriction on environments and from (6.19) and
(6.20), we have

B} = B | (names(Ran(E | N))) (6.21)
We can now apply induction to (6.17) and (6.21) to get
Bj = B' || (names(Ran(E | N))) (6.22)

From the definition of restriction and from (6.20) and (6.22), we have By =
B || N, as required. O

6.4. COMPILATION 105

6.4 Compilation

Compilation is defined in terms of translation steps. The rules for compilation
allow inferences among sentences of the form

Btp= (N)(B,p)

where B and B’ are bases, p is a source program unit, p’ is a target pro-
gram unit, and N is the set of names that are generated during compilation.
Sentences of this form are read “p compiles to (N)(B',p') in B.” Again, the
prefix (V) in the object (N)(B',p') binds names and we consider objects of
this form equal up to renaming of bound names. We refer to bases in objects
of the form (IV)(B,p) as export bases.

Program units BtFp= (N)(B,p)

Etp= (N)(E,p)

EFp= (N(E.7) (6:25)
EFp= (N)(E,p) (NUN')Nnames(E.B) =/
Bryp = (N)(B,p") N'N(NUnames(E' p)) =0 (6.24)

EBFp= (NUN)(E.B,p")

Comment:

(6.24) The side conditions in this rule ensures that generated names are
unique.

The following proposition states that compilation of a program unit de-
pends only on the part of the basis that describes names that are used in the
program unit. The usage propagation property of translation steps (Prop-
erty 6.2.2) is essential for this proposition.

Proposition 6.4.1 (Compilation is closed under strong enrichment)
If BFp= (N)(B,p') and B" J (B |} uses p) then B" +p = (N)(B',p).

106 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

Proor The proof is by induction over the structure of bases.

‘CASE B=F ‘ The result follows from assumptions, from rule 6.23, and
from Property 6.2.1.

‘ CASE B=FE.By ‘ From assumptions and from rule 6.24, we have

Etp= (N")(E'.p) (6.25)
(N"UN')Nnames B = () (6.26)

By Fp' = (N')(B",p") (6.27)

N'N (N"Unames(E',p")) =0 (6.28)
N=N'UN'" and B =E.B" (6.29)

By appropriate renaming of bound names of (N” U N')(E'.B",p"), we can
assume

(N"UN'")Nnames B" =0 (6.30)

Write B” in the form E”.Bj. From assumptions and from the definitions of
strong enrichment and restriction, we have

E" 1 (E | uses p) (6.31)
B{ 3 (B; || names(Ran(E | uses p))) (6.32)

It follows from (6.31), from (6.25), and from Property 6.2.1 that we have
E"Fp= (N")(E',p) (6.33)
Moreover, from (6.25) and from Property 6.2.2, we have
uses p' C names(Ran(E | uses p)) (6.34)
Now, from (6.32), from (6.34), and from Proposition 6.3.1, we have
BY 3 (B; | uses p) (6.35)
We can now apply induction to (6.27) and (6.35) to get
By Fp' = (N')(B",p") (6.36)

From rule 6.24 and from (6.33), (6.29), (6.30), (6.36), and (6.28), we have
B"Fp= (N)(B',p"), as required. O

We now demonstrate that compilation is deterministic:

6.5. A FRAMEWORK FOR SEPARATE COMPILATION 107

Proposition 6.4.2 (Compilation is deterministic) If B+ p = (Ny)(Bi,p1)
and B & p = (N3)(Ba,p2) then (N1)(By,p1) = (N2)(Bz, p2).

ProOOF The proof is by induction on the structure of bases.

‘ CASE B = E‘ From Property 6.2.3, from assumptions, and from rule 6.23,
we have (N7)(B1,p1) = (N2)(Bs, p2), as required.

‘CASE B = E.B" Write B in the form F,.B| and write By in the form
E,.B),. From assumptions and from rule 6.24, we have

Et+p= (N)(E,p1) (6.37)
Etp= (N2)(Ez,p2) (6.38)
B+ pi = (N1)(By, &1) (6.39)
B' = py = (N3)(Bj, ¢2) (6.40)
BFp= (N,UN)(Bi,c) (6.41)
BF p= (NyUN)(Ba,) (6.42)

From Property 6.2.3 and from (6.37) and (6.38), we have (Ny)(Ei,p1) =
(N3)(E9, p2), thus, we have

El = E2 and P1 = P2 (643)
for some choice of Ny and N, such that N; = N,. Moreover, by applying
induction to (6.39) and (6.40), we have (N])(Bj,c¢1) = (Ng)(Bb, ¢o), thus, we
have

Bi = Bé and C1 = Co (644)
for some choice of Ni and Nj such that Nj = Ni. It now follows from (6.43)

and (6.44) that we have (N7 U N{)(Bi,¢1) = (No U N3)(Bs, ¢2), as required.
O

6.5 A Framework for Separate Compilation

Based on the notion of compilation that we developed in the previous section,
we now present a simple framework for managing separate compilation or

108 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

what we call cut-off incremental recompilation. Recall that the rules for
compilation allow inferences among sentences of the form

BtFp= (N)(B,c)

where B is a basis, p is a source program unit, N is a set of names, and c is
a target program unit.

A project prj is a sequence of pairs of a program unit identifier (file name)
and a program unit:

prj i:= pid>p program unit
| prjL prYy sequence
| € empty

Projects are entities provided by the programmer. In other separate compila-
tion schemes a make file or a configuration file provides similar information.

Target program units may be put together in a sequence to form code
objects. We use o to range over code object:

0o := ¢ target program unit
| o1 09 sequence
| € empty

When two code objects 0o; and o, are put together to form the code object
0 = 01 ; 09, the code objects 0; and 0y are implicitly linked in the sense that
used names of 0, may be bound by declared names of 0;. The set of declared
names of o is the union of the declared names of 0; and 0. Moreover, the
set of used names of o is the union of used names of 0; and the subtraction
of the used names of 0, with the declared names of o;.

We now define the notion of a repository. Informally, a repository holds
information about compiled program units. A repository R is a finite map
from program unit identifiers to objects of the form (B, p, (N)(B’, c)), where
B and B’ are bases, p is a program unit, N is a set of names, and c is a target
program unit. The basis B is referred to as the import basis of the repository
entry and holds assumptions for compiling p. The object (N)(B',c¢) is the
result of previously compiling p in a basis that strongly enriches B. We shall
refer to B’ as the export basis of the repository entry. A repository R is
well-formed, written + R, if for all objects (B, p, (N)(B’,¢)) in the range of
R, we have B+ p = (N)(B',c) and B = B |} uses p.

6.5. A FRAMEWORK FOR SEPARATE COMPILATION 109

We now give rules for managing (or compiling) projects. The rules allow
inferences among sentences of the form

R,Bt prj = (N)(B',0), R

where R and R’ are repositories, B and B’ are bases, prj is a project, N
is the set of names that are generated during compilation, and o is a code
object. Sentences of this form are read “prj compiles to (N)(B',0) and R’
in (R, B).”

Projects R,BtF prj = (N)(B',0), R

(6.45)

R,BFe= (0)({}e) {}

R(pid) = (Bo,p', (N)(B';c)) p=p BB,
NnNnames B=0 R = {pid — R(pid)}

6.46
R,Bt+ pid>p= (N)(B,c), R (6.46)

(pid ¢ Dom R) V (R(pid) = (Bo,p', A) A (p # p'V B 2 By))
BtFp= (N)(B,c) NnNnames B=10
R' = {pid — (B |} uses p,p, (N)(B',c))}
R,BF pidvp= (N)(B,c),R

(6.47)

R, Bt prj, = (N1)(B1,01), Ry
R,B + By F p?"j2 = (NQ)(BQ,OQ),RQ
(N1UNy)Nnames B=10 N, N (N; Unames(By,01)) =0

5 - 6.48
R, Bt prj, pris = (N1 U Ny)(B1 + By, 01 ; 02), Ri + R ()

Comments:

(6.46) This rule allows for a compilation result in the repository for pid to
be reused if certain side conditions hold. First, the program unit must

110 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

not have changed since the result was stored in the repository. This re-
quirement is expressed in the rule with the side condition p = p; in an
implementation, file modification dates or cryptographic checksums may
be used to check for this requirement. Second, the basis in which the
project is compiled must strongly enrich the import basis of the reposi-
tory entry for the program unit. Finally, the generated names of the object
found in the repository must be fresh with respect to the compilation basis
in which the project is compiled.

(6.47) This rule corresponds to compilation. If the side condition in this rule
is satisfied then there is no object in the repository that can be reused;
thus, the program unit must be (re)compiled. It is never the case that
both rule 6.46 and rule 6.47 are applicable, given R, B, and prj.

(6.48) The side conditions in this rule ensure that generated names are
unique.

The rules for managing projects are non-deterministic because the choice
of the name set /V; in rule 6.48 has influence on whether rule 6.46 is applicable
for program units in prj,. This non-determinism, however, has no influence
on the correctness result that we shall demonstrate in Section 6.6. However,
this flexibility in the rules is exactly what allows for cut-off recompilation.
We shall return to this issue in Section 6.7.

6.6 Correctness of the Framework

Correctness of the separate compilation framework expresses that the re-
sult obtained by compiling a project in some well-formed repository can be
obtained by compiling the project in any well-formed repository. First, we
demonstrate that compilation of a project in some well-formed repository
results in a well-formed repository:

Proposition 6.6.1 (Well-formed repositories) If + R and R,B +
prj = (N)(B',0),R' then F R’

PrROOF The proof is by induction on the derivation of R, B + prj =
(N)(B',0),R'.

6.6. CORRECTNESS OF THE FRAMEWORK 111

| CasE rule 6.45| In this case we have R’ = {}, which is well-formed, as
required.

‘CASE rule 6.46‘ From assumptions, we have F R’, as required.

‘ CASE rule 6.47‘ Let B” = B |} uses p. From assumptions and from rule 6.47,
we have

BFp= (N)(B,c) (6.49)
R' = {pid — (B",p,(N)(B',c))} (6.50)

From reflexivity of strong enrichment, we have
B” 3 (B | uses p) (6.51)

Now, from Proposition 6.4.1 and from (6.49), (6.50), and (6.51), we have
B" + p = (N)(B',c). Moreover, because B" = B || uses p, we have B" =
B" || uses p. Thus, from the definition of well-formedness of repositories and
from (6.50), we have + R', as required.

‘CASE rule 6.48‘ From assumptions, from rule 6.48 and by applying induc-
tion twice, we have + R; and F R,. From the definition of well-formedness
of repositories, we have F (R; + Ry), as required. a

Correctness of the separate compilation scheme is expressed by the fol-
lowing proposition:

Proposition 6.6.2 (Correctness) If + R; and + Ry and Ry, B+ prj =
(N)(B',0), R then Ry, B+ prj = (N)(B',0),R.

PrOOF The proof is by induction on the derivation of R{,B + prj =
(N)(B',0), R.

‘ CASE rule 6.45‘ The result follows from assumptions and from rule 6.45.

| CasE rule 6.46] From assumptions and from rule 6.46, we have
= R (6.52)

= Ry (6.53)

Ry,BF pid>p= (N)(B',c),R (6.54)

Ry(pid) = (Bo,p, (N)(B',¢)) (6.55)
(6.56)

(6.57)

(6.58)

B 1 B,
N Nnames B =)
R = {pid — Ry (pid)}

112 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

From the definition of well-formed repositories and from (6.52) and (6.55),
we have

ByFp= (N)(B,c) (6.59)
By = By | (uses p) (6.60)

There are now two sub-cases to consider. First, consider the case where
rule 6.46 is applicable. Then, there exists a basis Bj such that

Ry(pid) = (By, p, (N)(B', ¢)) (6.61)
BB (6.62)

From the definition of well-formed repositories and from (6.53) and (6.61),
we have

B| = B | (uses p) (6.63)
It follows from Proposition 6.3.2 and from (6.56), (6.62), (6.60), and (6.63)
that we have By = B,. Now, from (6.55), (6.61), we have R;(pid) = Ry (pid),
hence, from rule 6.46 and from (6.61), (6.62), (6.57), and (6.58), we have
Ry, B+ pid>p = (N)(B',¢), R, as required.

Second, consider the case where rule 6.47 is applicable. Then, there exist
a basis By, a program unit p’, and an object A such that

(pid & Dom Ry) V (Ry(pid) = (By, p', A) A (p# p' vV B 2 By)) (6.64)
From (6.56) and from (6.60), we have
B 1 By | (uses p) (6.65)
Now, from Proposition 6.4.1 and from (6.65) and (6.59), we have
BFp= (N)(B,c) (6.66)
Moreover, from Proposition 6.3.3 and from (6.56) and (6.60), we have By =

B |} (uses p), hence, from rule 6.48 and from (6.64), (6.66), (6.57), (6.58),
and (6.55), we have Ry, B F pid>p = (N)(B',c), R, as required.

6.6. CORRECTNESS OF THE FRAMEWORK 113

‘ CASE rule 6.47‘ From assumptions and from rule 6.47, we have

R’ (6.67)

- Ry (6.68)

(pid ¢ Dom Ry) V (Ri(pid) = (B, p', A) A (p #p' vV B 2 Bj)) (6.69)
BEFp= (N)(B,c) (6.70)

N Nnames B = () (6.71)

R = {pid — (B | uses p,p, (N)(B',¢c))} (6.72)

Ri, Bt pidvp= (N)(B',c),R (6.73)

There are now two sub-cases to consider. First, consider the case where
rule 6.47 is applicable. Then, there exist a basis B{/, a program unit p”, and
an object A’ such that

(pid & Dom Ry) V (Ry(pid) = (By,p", A) A (p # p"V B 2 By)) (6.74)

It follows from rule 6.47 and from (6.74), (6.70), (6.71), and (6.72) that we
have Ry, B+ pid>p = (N)(B',c), R, as required.

Second, consider the case where rule 6.46 is applicable. Then, we have
that there exist bases By and B”, a name set N’, and a target program unit
¢’ such that

Ry(pid) = (By, p, (N')(B", ")) (6.75)
B 1 B, (6.76)

From the definition of well-formed repositories and from (6.68), we have

Byt p= (N')(B",¢) (6.77)
By = By |} (uses p) (6.78)

Now, from (6.78) and from (6.76), we have B J (By | (uses p)), thus, from
Proposition 6.4.1 and from (6.77), we have

Brp= (N")(B",) (6.79)
Moreover, from Proposition 6.4.2 and from (6.77) and (6.79), we have

(N"Y(B",d) = (N)(B',¢) (6.80)

114 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

From Proposition 6.3.3 and from (6.76) and (6.78), we have By, = B |
(uses p), thus, from (6.75), (6.72), and (6.80), we have

R = {pid — Ry(pid)} (6.81)

Now, from rule 6.46 and from (6.75), (6.80), (6.76), (6.71), and (6.81), we
have Rs, B pid>p = (N)(B',c), R, as required.

‘ CASE rule 6.48‘ From assumptions and from rule 6.48, we have

Ry (6.82)

= Ry (6.83)

Ry, B+ prj; = (N1)(B1,01), R} (6.84)

(N1 U N;) Nnames B =0 (6.85)

Ry, B+ By - prjy, = (Ny) (B2, 02), R}, (6.86)

Ny N (Ny Unames(By,01)) =0 (6.87)

Ry, Bt prj, prj, = (N1 UN2)(By + By, 015 02), Ry + R, (6.88)

By applying induction twice to (6.82) and (6.84) and to (6.83) and (6.85),
respectively, we get

Ry, BF prj, = (N)(By,01), R, (6.89)
RQ, B+ B1 F ijQ = (NQ)(BQ, 02), RIZ (690)

Now, from rule 6.48 and from (6.89), (6.85), (6.90), and (6.87), we have
Ry, B prj, priy = (N1 U Ny)(By + By, 01 ; 03), R} + R, as required. O

Soundness of the separate compilation framework expresses that the result
obtained by compiling a project in some well-formed repository also can be
obtained by compiling the project in an empty repository. Soundness follows
immediately from the more general correctness result.

Corollary 6.6.3 (Soundness) If + R and R,B + prj = (N)(B',0), R’
then {}, B+ prj = (N)(B',0), R'.

Similarly, completeness of the separate compilation framework expresses
that the result obtained by compiling a project in an empty repository also
can be obtained by compiling the project in any well-formed repository. Com-
pleteness follows immediately from the more general correctness result.

Corollary 6.6.4 (Completeness) If - R and{}, Bt prj = (N)(B',0), R
then R, B+ prj = (N)(B',0), R'.

6.7. NON-DETERMINISM AND MATCHING 115

6.7 Non-Determinism and Matching

As we mentioned in Section 6.5, the rules for managing projects are non-
deterministic in the sense that the choice of the name set N; in rule 6.48
may influence whether rule 6.46 is applicable for program units in prj,.

Almost all non-determinism may be eliminated by always generating fresh
names during compilation and by allowing renaming of bound names only
in rule 6.47 when the program unit p is compiled to the object (N)(B',c).
At this point, if an object is available in the repository for the program unit
identifier pid, the goal is to choose the name set N such that the basis B’
agrees, on as many entries as possible, with the export basis for pid in the
repository. Call the export basis for pid in the repository for B. In an
implementation, the process of renaming N can be done by matching the
basis B’ to agree with the basis B on as many entries as possible. Now,
the reason it is not possible to eliminate the non-determinism completely is
that different choices of the name set N can satisfy agreement for B and B’
for different entries and thus may result in different repository objects being
reused. As a simple example, assume a compiler basis is an environment that
maps program variables, ranged over by a and b, to machine code labels,
ranged over by [. Further, assume B = {a + [1,b — [y}, for some distinct
machine code labels /; and [y, and assume (N)(B',¢) = ({I})({a — |,b —
[}, c), for some c. There are now two possibilities for the choice of N, each
of which satisfy agreement for either a or for b, exclusively.

The implementation of matching may be composed from matching func-
tions for each translation step in a compiler.

Following the preceding strategy, the separate compilation framework
may be implemented by use of standard linking technology; the framework
is used in the ML Kit with Regions (aka the ML Kit Version 2) for provid-
ing cut-off incremental recompilation for the Standard ML Core language
[TBE*97, Chapter 16]. In the next chapters, we shall see how the framework
for cut-off incremental recompilation is extended to work in a setting where
Standard ML Modules phrases are interpreted at compile time so as to prop-
agate implementation details across Modules boundaries during compilation.

116 CHAPTER 6. CUT-OFF INCREMENTAL RECOMPILATION

Chapter 7

The Language IntML

In Chapter 2, we presented the language ModML. In this chapter, we present
an explicitly typed intermediate language that we shall use as the target lan-
guage for a translation of ModML programs. The language is called IntML;
it has no support for modules because, as we shall see in Chapter 8, mod-
ule constructs are eliminated during the translation into IntML. The IntML
language has support for let-polymorphism and it is explicitly typed so that
only type checking (as opposed to type inference) is necessary to decide
whether IntML declarations are well-typed. Later phases of a compiler may
benefit from explicit type information in the intermediate language. More-
over, a compiler may sometimes wish to check that transformations on the
intermediate language, such as in-lining and other optimisations, preserve
typeability. This possibility has proved to be of practical importance for
compiler development [TMC*96].

Variables in IntML are not identifiers stemming from ModML programs.
Because ModML programs are flattened (e.g., module constructs are elim-
inated) when translated into IntML declarations, it is necessary to choose
fresh variables, from a separate name space during translation, to ensure
that identifiers stemming from ModML programs do not clash. The trans-
lation from ModML programs to IntML declarations maintains a mapping
from ModML identifiers to IntML variables.

IntML does not have any type abstraction mechanism (besides let-poly-
morphism). That is, a type name can only be bound by a datatype declara-
tion, which explicitly mentions the set of value constructors associated with
the type name. For simplicity, IntML allows datatype declarations to have
only one value constructor. Moreover, value constructors in IntML cannot

117

118 CHAPTER 7. THE LANGUAGE INTML

take arguments. It is straightforward, however, to extend IntML to allow for
multiple value constructors for each type name and to allow value construc-
tors to take arguments (see Section 7.5).

For the purpose of demonstrating type correctness of the translation from
ModML programs to IntML declarations, IntML declarations may be com-
posed (i.e., linked) to create a new IntML declaration. In an implementation,
however, linking of program fragments can be performed at a much later stage
(e.g., after machine code generation.)

In the sections to follow we present the syntax and the typing rules for
IntML. In Section 7.3, we present the dynamic semantics for IntML in the
style of a natural operational semantics. We demonstrate type soundness for
IntML in Section 7.4; the proof is inspired by other proofs of type soundness
[Tof88, Ler92] for Milners polymorphic type discipline [Mil78, DM82|. Leroy
demonstrates [Ler92] that the techniques that we use to demonstrate sound-
ness for IntML extends to other features of Standard ML including recursion
and imperative constructs. In Section 7.5, we illustrate how datatypes in
IntML can be extended to allow for multiple value constructors.

7.1 Syntax

We assume a denumerably infinite set [Var C Name of IntML variables and a
denumerably infinite set ICon C Name of IntML constructors. We use = and ¢
to range over variables and constructors, respectively. Further, we sometimes
use a to denote either a variable or a constructor. IntML typed expressions
and IntML typed declarations conform to the grammar in Figure 7.1.

The IntML language allows functions of the form Ac : 7.e, where c is
a constructor. Such a function resembles a case construct with only one
branch. Dynamically, when applied, the function fails if it is not applied to
a value denoting the constructor c¢. In Section 7.4, we demonstrate that for
well-typed Int ML program phrases, the pattern matching mechanism always
succeeds. The constructor c¢ is not bound within the body of the function,
thus, the constructor occurs free in the function and may not be renamed.

By contrast, we consider the variable z in a function of the form Az : 7.e
to be bound within its body e. Similarly, we consider the type variables o)
in the value declaration

valdec z : a(k).T =e

7.2. TYPING RULES 119

e ::= da:T.e function
| e e application
| a, variable or constructor
| letdiney local declaration
d ::= valdec z:a® .7 =e value declaration
| datdec a¥t =¢ datatype declaration
| dy; do sequence
G empty

Figure 7.1: Grammar for IntML typed expressions (e) and for IntML typed
declarations (d).

to be bound within 7 and e. We consider functions and value declarations to
be equivalent up to renaming of bound variables and bound type variables,
respectively. The declared names of a declaration d, written decl(d), is the
set defined by the following equations:

decl(valdec z: o™ .r =¢) = {z}
decl(datdec a¥t =¢) = {t}
decl(dy ; d2) = decl(dy) U decl(dy)
decl(e) = 0

For declarations of the form d; ; ds, declared names of d; are bound in dy. The
IntML language supports local declarations through the use of expressions of
the form let d in e. We consider such expressions equivalent up to renaming
of declared names of d.

7.2 Typing Rules

Before we give the typing rules for IntML, we present the semantic objects
that are involved. The semantic objects are those for the static semantics
of ModML, presented in Section 2.3, including IntML variables, IntML con-
structors, and those semantic objects given in Figure 7.2.

The typing rules for expressions and declarations allow inferences among

120 CHAPTER 7. THE LANGUAGE INTML

A € IVarEnv = IVar -2 TypeScheme
IConEnv = ICon -2 TypeScheme

© € ITyEnv = TyName A IConEnv
©,A)orI' € IEnv =ITyEnv x [VarEnv
) y

Figure 7.2: Additional semantic objects for IntML type checking.

sentences of the forms
'e:7 and THd:TY

where I and I are typing environments, e is an expression, 7 is a type, and
d is a declaration. Sentences of the former form are read “e has type 7in I'.”
Sentences of the latter form are read “d respects [V in I'.” When I is some
typing environment, we write tyvars I' to denote the set of type variables
that occur free in I'. Moreover, we write tynames I" to denote the set of type
names that occur free in I' and names I" to denote the set of names that occur
free in I'. Notice that a name or a type name occurs free in some object if it
occurs free in the domain of some finite map within the object.

Expressions

7=7®t Dom(T'(t))={c} T(t)(c)=7 Thre:7

7.1
'Xe:Te:7— 1 (7.1)
F'+{z—7}Fe:7 z¢namesl (72)
'FXx:1e:7—=17)
I'Fey:mm—7 T'hey:m (73)

I'Fe ey: 7

T(z)

(@) = 7 (7.4)

'z, :7

7.2. TYPING RULES 121

r=78t T(t)(c) =T
I'e 7

(7.5)

F'd:T" T'+I"Fe:7 DomI'Ntynames 7 =0
'Fletdine: 7

(7.6)

Comments:

(7.1) The requirement Dom(I'(t)) = {c} ensures that the simple match mech-
anism is exhaustive.

(7.6) Locally declared type names must not escape a let expression.

Declarations

zt¢&names’ ThFe:7 tyvars o® Ntyvars [=0

7.7
I'Fvaldec z: a®.1 = e: {z +— Vo) .7} (7.7)

t ¢ names I' arity t =k
p A (7.8)

[+ datdec a®t =c: {t — {c+— Va¥.aMt}}

'dy:Ty T+ Fdy:T

111y 1P dg:ly (7.9)
'k d1 3 d2 : Fl + FQ

(7.10)

F'Fe:{}

122 CHAPTER 7. THE LANGUAGE INTML

Comment:

(7.8) An IntML value constructor need not be chosen distinct from IntML
value constructors of other datatypes. The type name has to be fresh,
however, formulated by the side condition ¢ & names I'.

The following proposition states that those names that are being declared
by a well-typed IntML declaration are chosen fresh:

Proposition 7.2.1 (Freshness of declared names) If I' - d : I' then
Dom I N names I' = @) and decl(d) = Dom I".

Proor By induction over the structure of d. O

Recall from Section 2.6 on page 14 that when S is a substitution, we write
tynames S to denote the type names that occur free in the range of S. The
following proposition states that type checking is closed under substitution.

Proposition 7.2.2 (Type checking is closed under substitution) Let
S be a substitution. If '+ e : 7 then S(I') + S(e) : S(r). Moreover, if
I'Fd:T" and Dom I'" N tynames S = () then S(T) F S(d) : S(I).

ProOOF By induction over the structure of e and d.

‘CASE e= mT‘ From assumptions and from rule 7.4, we have I'(z) > 7.
Because generalisation is closed under substitution, we have (S(I'))(z) >
S(7), thus, from rule 7.4, we have S(I') F S(e) : S(7), as required.

‘CASE e=1let din e" From assumptions and from rule 7.6, we have

THd:T (7.11)
F+T'ke:7 (7.12)
Dom I N tynames 7 = () (7.13)

From Proposition 7.2.1 and from (7.11), we have

Dom I N tynames I" = () (7.14)
decl(d) = Dom T (7.15)

From (7.13), (7.14), and (7.15), we can assume

Dom IV N tynames S = () (7.16)

7.2. TYPING RULES 123

by appropriate renaming of locally declared names. From (7.16) and (7.13),
we have

Dom I N tynames(S(7)) = 0 (7.17)

By applying induction to (7.11) and (7.16), we have
S(T) F S(d) : S(T) (7.18)

Moreover, by applying induction to (7.12), we have
S(T)+ S+ S(e): S(r) (7.19)

Now, from rule 7.6 and from (7.18), (7.19), and (7.17), we have S(I') F S(e) :
S(7), as required.

‘CASE d = valdec z : o) .1 = e‘ From assumptions and from rule 7.7, we
have

x ¢ names I' (7.20)
F'Fe:T (7.21)
tyvars o) M tyvars I = () (7.22)
[' = {z — Va).r} (7.23)
Dom I N tynames S = () (7.24)
From (7.20) and from (7.24), we have
x ¢ names(S(I")) (7.25)
By appropriate renaming of bound type variables, we can assume
tyvars a® NInv S = () (7.26)
From (7.22) and from (7.26), we have
tyvars o®) N tyvars(S(T)) = (7.27)

Moreover, from (7.26), we have

S(Va®.7) = Va® .S (r) (7.28)

124 CHAPTER 7. THE LANGUAGE INTML

By applying induction to (7.21), we have
S(T)F S(e) : S(r) (7.29)

It follows from rule 7.7 and from (7.25), (7.29), (7.27), (7.28), and (7.23) that
we have S(I') - S(d) : S(I"), as required.

CASE d = datdec ¥ t = c‘ From assumptions and from rule 7.8, we have

t & names T’ (7.30)
arity t =k (7.31)
I = {t = {c— Ya® .a® 1}} (7.32)

From assumptions and from (7.32), we have
t & names(S(I)) (7.33)

Now, from rule 7.8 and from (7.33), (7.31), and (7.32), we have S(I') - S(d) :
S(I"), as required.

‘CASE d = d; ; do| From assumptions and from rule 7.9, we have

r =+ Fl F d2 . FQ (735)
I'=T; +T, (7.36)

From assumptions and from (7.36), we have

Dom TI'; N tynames S = () (7.37)
Dom T’y N tynames S = () (7.38)

By applying induction to (7.34) and (7.37), we have
S(T) F S(dy): S(Ty) (7.39)
Moreover, by applying induction to (7.35) and (7.38), we have
S(T)+ S(Ty) F S(dg) : S(Tg) (7.40)

Now, from rule 7.9 and from (7.39), (7.40), and (7.36), we have S(I") - S(d) :
S(I"), as required.
The remaining cases follow similarly. O

7.3. DYNAMIC SEMANTICS 125

7.3 Dynamic Semantics

Evaluation of an IntML typed phrase is defined by first erasing all type
information from the phrase, thereby yielding an untyped phrase, and then
evaluating this untyped phrase with respect to an environment that provides
assumptions for those variables that occur free in the phrase.

IntML untyped phrases are defined by an erasure function on typed
phrases. We use e, and d, to range over IntML untyped expressions and
IntML untyped declarations, respectively. Moreover, when it is clear from
context, we also use e and d to range over IntML untyped expressions and
IntML untyped declarations, respectively. When p is some IntML typed
phrase, the erasure of p, written er(p), is defined by the following equations:

Untyped expressions er(e) = ey
er(Aa:T.e) = Aa.er(e)
er(e; ea) = er(er) er(es)
er(a;) = a
er(let d ine) = 1let er(d) in er(e)

Untyped Declarations er(d) = dy

er(valdec z: o™ .7 =¢) = valdec z = er(e)
er(datdec aMt=¢) = ¢

)

)

@’f’(dl) 2

er(e

Notice that untyped declarations do not include datatype declarations.

The semantics of untyped IntML phrases are given as a natural opera-
tional semantics. The rules are instrumented with extra rules for expressing
that evaluation goes wrong if a non-function is used as a function in an appli-
cation, if a variable is looked up in a dynamic environment but is not there,
or if pattern matching fails.

We use IExp to denote the set of IntML untyped expressions. The seman-
tic objects for the dynamic semantics are given in Figure 7.3. Constructors

|
9}

= er(dy) ; er(ds)

126 CHAPTER 7. THE LANGUAGE INTML

Val = ICon U Clos

Clos = (IVar UICon) x IExp x DynEnv
DynEnv = IVar A2 Val

ExpResult = Val U {wrong}

DecResult = DynEnv U {wrong}

>
M M Mm m M

Figure 7.3: Semantic objects for the dynamic semantics.

are values. The object wrong is not a value; it is the result of a faulty
evaluation such as an attempt to apply a non-function to an argument.
The evaluation rules allow inferences among sentences of the forms

DFe~r and DEd~p

where D is a dynamic environment, e is an IntML untyped expression, d is an
IntML untyped declaration, r is an expression result, and p is a declaration
result. The former sentence is read “e evaluates to r in D.” The latter
sentence is read “d evaluates to g in D.”

Expressions DFe~sr

D+ da.e ~ ()a.e, D) (7.41)
Drc~ec (7.42)
% (7.43)

o2 (7.44)

D x ~ wrong

7.3. DYNAMIC SEMANTICS

DFke~ (A\x.e,Dy) DrFes~v Dy+{r—vike~r

DhFeeyg~r

DFei~ (Ace,Dy) Dkey~c DogkFe~r
DhFeeyg~r

DFe ~ (Ace,Dy) Dkey~r c#r

Dt ey eg ~ wrong

D+ ey ~ wrong or ¢

Dt ey eg ~ wrong

Dt e~ (Ax.e,Dy) DF ey~ wrong

Dt ey eg ~ wrong

DrFd~D D+DbrFe~~sr
DrFletdine~r

Dt d~» wrong

Dt let d in e ~ wrong

Comments:

127

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)

(7.51)

(7.46) and (7.47) The simple pattern mechanism of IntML requires the con-
structor in the closure to be identical to the result of evaluating the argu-

ment of the application.

(7.48) The “or” in this rule is used to collapse what is really two rules into

one.

128 CHAPTER 7. THE LANGUAGE INTML

Declarations

DrFe~w

7.52
Dt valdec z = e~ {z +— v} (7.52)
D e~ wrong (7.53)
Dt valdec x = e ~ wrong
DkHd Dy D+DikHd D
1~ L1 1 2~ Ly (7_54)
D}_dl ; dg’\ﬁpl—i—pg

D+ dy ~ wrong (7.55)

D tFdy; dy ~ wrong
DtFdy~ Dy D+ D;Fdy~ wrong (7.56)

Dtk dy; dy ~ wrong
(7.57)

Drke~ {}

7.4 Type Soundness

In this section, we demonstrate type soundness for IntML. The result implies
that a well-typed IntML program phrase does not evaluate to wrong. Thus,
type soundness implies that evaluation of the program phrase will never
attempt to apply a non-function to an argument and never look in vain
for a variable in the dynamic environment. Moreover, type soundness of
IntML guarantees that the simple pattern matching mechanism of IntML
is exhaustive; that is, the set of constructors to match against is known at
compile time.

To demonstrate that well-typed IntML program phrases do not go wrong,
we first define a consistency relation that relates dynamic objects to static
objects. The relation is written

©O=A:B

7.4. TYPE SOUNDNESS 129

where A is some dynamic object and where B is some static object. The type
name environment © provides constructor environments for constructors in
A. We define the relation by induction over the structure of A.

e O =c:mWtiff O(t)(c) = 70t

e O = (Ma.ey,D) : 71 — 7o iff there exist a typed expression e and a
typing environment I" such that © =D :Tand ' da: 1611 — 7
and er(e) = e,

e O [=v: o iff for all types 7 such that o > 7, we have © =v : 7

e © =D : (0A)iff Dom D = Dom A and © = D(x) : A(z) for all
x € Dom D and Dom © D Dom ©' and ©(t) = ©'(¢t) for all t € Dom ©'

Before we state the type soundness proposition, we shall prove some prop-
erties of the consistency relation. A type name environment is closed if it
contains no free type variables. First, the consistency relation is closed under
substitution:

Proposition 7.4.1 (Substitution) Assume that © is closed. If © = v : 7
then © = v : S(7) for any substitution S.

ProOOF By induction over the structure of v.

From assumptions and from the definition of the consistency

relation, we have 7 = 7)¢ and ©(t)(c) = 7. Because generalisation is closed
under substitution and because O is closed, we have O(t)(c) = S(7). It
follows from the definition of the consistency relation that we have © = ¢ :
S(7), as required.

CASE v = (Aa.ey, D) | From assumptions and from the definition of the con-

sistency relation, we have 7 = 77 — 7, for some types 71 and 75. Let ' be a
typing environment and let e be an expression such that er(e) = e, and

OED:T (7.58)
'FXa:me:m — T (7.59)

From Proposition 7.2.2 and from (7.59), we have

S(T)F Aa: S(m).S(e): S(r — 1) (7.60)

130 CHAPTER 7. THE LANGUAGE INTML

Let o € Dom D. Write I'(zy) in the form Va®) 1y, with a*) chosen such
that tyvars a®) NInv S = (. We then have S(I'(7¢)) = Va®).S(ry). Let
7(¥) be a sequence of types. Moreover, let S’ be the substitution {7*)/a(®)},
From the definition of the consistency relation and from (7.58), we have

© =D(xg) : 19 (7.61)
Because © is closed, we can apply induction to (7.61) to get
© = D(x) : (50 .5)(m0) (7.62)

From the definitions of the consistency relation and of generalisation and
because (7.62) holds for any sequence 7®) of types, we have

© = D(zo) : S(I'(20)) (7.63)

Now, from the definition of the consistency relation and from (7.58) and
because (7.63) holds for all zy € Dom D, we have

O ED:S() (7.64)

It follows from the definition of the consistency relation and from (7.60) and
(7.58) that we have © = (\a.ey, D) : S(7), as required. O

The consistency relation is closed under modification of type name envi-
ronments:

Proposition 7.4.2 (Type name environment modification) Assume
that Dom © N Dom ©' = ().

e IfOEv:Tthen©®+0 =uv:T.
e IfOEv:0othen®+0 Ev:o0.
e fOED:T then©+0© =D :T.

Proor By induction over the derivation of the consistency relation.

CASE © Ev:7 and v = c¢| From assumptions and from the definition of

the consistency relation, we have 7 = 7®)¢ and O(t)(c) > 7, for some type
name ¢ and for some types 7%). Because Dom © N Dom ©' = (), we have

7.4. TYPE SOUNDNESS 131

(© 4+ 0)(t)(c) = 7, thus, from the definition of the consistency relation, we
have © + ©' = v : 7, as required.

CASE © = v : 71 and v = (\a.ey, D)| From assumptions and from the defi-
nition of the consistency relation, we have that there exist types 7, and 7,
an expression e, and a typing environment I', such that

T=T =T (7.65)
OED:T (7.66)
F'FXa:m.e:T (7.67)
er(e) = ey (7.68)

Dom © N Dom @' = () (7.69)

By applying induction to (7.66) and (7.69), we have
0+60 ED:T (7.70)

From the definition of the consistency relation and from (7.65), (7.67), (7.68),
and (7.70), we have © + ©' = v : 7, as required.

CASE © = v:o| Let 7 be some type such that o > 7. From assumptions
and from the definition of the consistency relation, we have

Dom © N Dom @' = () (7.71)
OFv:T (7.72)

By applying induction to (7.71) and (7.72), we have
O+ Ev:T (7.73)

Because (7.73) holds for any type 7 such that o > 7, we have from the
definition of the consistency relation that © + ©' = v : 0, as required.

CASE © =D : I'| From assumptions and from the definition of the consis-
tency relation, we have

Dom D = Dom(A of T') (7.74)

© = D(z) : I'(z) for all z € Dom D (7.75)
Dom © D Dom(© of I') (7.76)

O(t) =T'(t) for all t € Dom(© of T) (7.77)
Dom © NDom ©' = (7.78)

132 CHAPTER 7. THE LANGUAGE INTML

By applying induction to (7.75) and (7.78) for each x € Dom D, we have
© + 0 ED(z):I'(z) for all z € Dom D (7.79)
From (7.76), we have
Dom(© + ©') D Dom(© of I') (7.80)
Moreover, from (7.76), (7.77), and (7.78), we have
(©+0©)(t) =T(t) for all t € Dom(© of T') (7.81)

It follows from the definition of the consistency relation and from (7.74),
(7.79), (7.80), and (7.81) that we have © + ©' =D : I, as required. O

The main proposition expresses consistency between the static semantics
of IntML and the dynamic semantics of IntML. The proposition must deal
with the possibility that a value constructor of a locally declared datatype
may escape in a closure. Consider the IntML expression

let datdec t = ¢ in Az : £5.(Axg : t.z) ¢ end

which has type ty — t; under empty assumptions. The expression evaluates,
under empty assumptions, to a closure that mentions the value constructor
c. Consequently, we must relate the value to the type ty — t; under assump-
tions that relate the type name ¢ to an environment that mentions the value
constructor ¢. The type name environment ©” in the proposition deals with
this possibility. Moreover, the type name set 71" is used to express that such
locally declared type names may be chosen fresh.

Proposition 7.4.3 (Type soundness) Let © be closed. Assume that © =
D :T'. Moreover, let T be a finite set of type names.

o [fTFe:7and Dt er(e) ~ r thenr # wrong and there exists ©" such
that ©" is closed and (T UDom ©)NDom 6" =0 and ©+ 0" E=1r: 7.

e IfTFd:T" and D+ er(d) ~ p and © = © of I'" and Dom © N
Dom ©' = () then ¢ # wrong and there exists ©" such that (©'+©") is
closed and (TUDom(©+0"))NDom 6" =0 and ©+60'+0" = o: TV,

7.4. TYPE SOUNDNESS 133

Proor The proof is by induction over the structure of e and d.

CASE e =)a: Tl.e" From assumptions and from rules 7.1, 7.2, and 7.41,
we have r # wrong, as required. Moreover, we have that there exists 75 such
that

F'FXa:m€e 7 (7.82)
T=T — Ty (7.83)
r = (Aa.el, D) (7.84)
e, = er(e) (7.85)

It follows from the definition of the consistency relation and from (7.82),
(7.83), (7.84), and (7.85), that we have © = r : 7, as required.

‘CASE e=e1 e ‘ From assumptions and from rule 7.3, we have

© is closed (7.86)
OED:T (7.87)
FFe :m—T (7.88)
I'Fey:m (7.89)
DFer(e)~r (7.90)

By inspection of the evaluation rules and from (7.90), we see that either
rule 7.45, rule 7.46, rule 7.47, rule 7.48, or rule 7.49 is used; in all cases,
there exists r; such that

Dt er(ey) ~ (7.91)

By applying induction to (7.86), (7.87), (7.88), and (7.91), we have r; #
wrong and there exists ©; such that

O, is closed (7.92)
(T UDom ©) N Dom ©; =) (7.93)
O+01FErm:mn—>T (7.94)

From the definition of the consistency relation and from (7.94), we have,
there exist (Aa.e,, Dg) and I'y and eg such that

r1 = {(Aa.ey, Dy) (7.95)

C) + (")1 IZ DO . F() (796)
TobFXa:mey:m— T (7.97)
(7.98)

er(eg) = ey

134 CHAPTER 7. THE LANGUAGE INTML

From Proposition 7.4.2 and from (7.93) and (7.87), we have
©+6,=D:T (7.99)
Moreover, from (7.86) and (7.92), we have
(© + O1) is closed (7.100)

There are now two cases to consider depending on whether a is a constructor
or a variable.

We first consider the case where a = c¢ for some constructor c. In this
case, we have from rule 7.1 and (7.97) that there exist 7¥) and ¢ such that

5 = 7F)¢ (7.101)
Dom(Ty(t)) = {c} (7.102)
To(t)(c) = 1 (7.103)
LoFep:m (7.104)

By inspection of the evaluation rules and from (7.90), (7.91), and (7.95), we
see that either rule 7.46 or rule 7.47 is used; in both cases, there exists ry
such that

DF er(es) ~ 1 (7.105)

By applying induction to (7.100), (7.99), (7.89), and (7.105), we have ry #
wrong and there exists ©5 such that

O, is closed (7.106)
(T U Dom(@ + @1)) N Dom @2 = @ (7107)
@+@1+@2):7'22’7'2 (7108)

From the definition of the consistency relation and from (7.108) and (7.101),
we have that there exists ¢’ such that ro = ¢’ and

(O 401+ 0)(t)() > (7.109)

From the definition of the consistency relation and from (7.96) and (7.103),
we have (©401)(t) = T'y(t), thus, from (7.109), (7.107), (7.102), and (7.103),

we have

c=c =ry (7.110)

7.4. TYPE SOUNDNESS 135

By inspection of the evaluation rules and from (7.90), (7.91), (7.105), and
(7.110), we see that rule 7.46 is used, thus, we have from (7.98) that

Dy b= er(eg) ~r (7.111)

By applying induction to (7.100), (7.96), (7.104), and (7.111), we have r #
wrong and there exists ©' such that

©' is closed (7.112)
(TUDom(© + ©1)) NDom ©' =0 (7.113)
©0+6,+0 =r:7 (7.114)

It follows from (7.92) and (7.112) that we have (©;+©’) is closed, as required.
Moreover, from (7.93) and (7.113), we have (TUDom ©)NDom(0;+0") = §,
as required.

We now consider the case where a = x for some variable z. In this case,
we have from rule 7.2 and (7.97) that

x ¢ names [y (7.115)
To+{z—mn}tFe:7 (7.116)

By inspection of the evaluation rules and from (7.90), (7.91), and (7.95), we
see that either rule 7.45 or rule 7.49 is used; in both cases, there exists 7
such that

Dt er(ex) ~ 1 (7.117)

By applying induction to (7.100), (7.99), (7.89), and (7.117), we have ry #
wrong and there exists ©, such that

O, is closed (7.118)
(T UDom(0 4 ©7)) N Dom O, = () (7.119)
®+®1+@2):T’Q 1 To (7120)

Because 1, # wrong, it follows that rule 7.45 is used, thus, we have
Do+ {z— ro} Fer(ey) ~r (7.121)
From Proposition 7.4.2 and from (7.119) and (7.96), we have

C) + (—‘)1 + @2): DO . FQ (7122)

136 CHAPTER 7. THE LANGUAGE INTML

From the definition of the consistency relation and from (7.122) and (7.120),
we have

O+ @1 + @2): (DO + {.T — 7'2}) : (Fo + {.7) — 7'2}) (7123)
From (7.100) and (7.118), we have
(© 4+ ©1 + O,) is closed (7.124)

Now, by applying induction to (7.124), (7.123), (7.116), and (7.121), we have
r # wrong and there exists ©' such that

©' is closed (7.125)
(T UDom(© + ©; + 6,)) N Dom ©' =0 (7.126)
©O+0,+0,+0 =r:T (7.127)

It follows from (7.92), (7.118), and (7.125) that we have (©; + 02 + ©') is
closed, as required. Moreover, from (7.93), (7.119), and (7.126), we have
(T UDom ©) N Dom(©; + O, + ©') = (), as required.

From assumptions and from rules 7.5 and 7.42, we have r #

wrong, as required. In fact, we have r = ¢ and

)y (7.128)
L(t)(c) =7 (7.129)

T =

From assumptions and from the definition of the consistency relation, we
have ©(t) = I'(¢), thus, from (7.128) and (7.129) and from the definition of
the consistency relation, we have © = ¢ : 7, as required.

‘CASE e= :rT‘ From assumptions and from rule 7.4, we have

T(z) -7 (7.130)
©E=D:T (7.131)

It follows from assumptions, from the definition of the consistency relation,
and from (7.130) that we have z € Dom D, thus, by inspection of the eval-
uation rules, we see that rule 7.43 is used. Hence, we have r # wrong, as
required; in fact, r = D(x). From the definition of the consistency relation
and from (7.131), we have

O Er:[(x) (7.132)

7.4. TYPE SOUNDNESS 137

It follows from the definition of the consistency relation and from (7.130) and
(7.132) that we have © = r : 7, as required.

‘ CAsEe=1let d in ¢ ‘ From assumptions and from rule 7.6, we have, there
exists I'' such that

Thd:T (7.133)
F+I"keé:r (7.134)

Dom(© of T") N tynames 7 = () (7.135)
© is closed (7.136)
OED:T (7.137)
DtFer(e)~r (7.138)

By inspection of the evaluation rules and from (7.138), we see that either
rule 7.50 or rule 7.51 is used; in both cases, there exists o such that

Dt er(d)~ p (7.139)
Let ©' = © of I". From Proposition 7.2.1 and (7.133), we have
Dom I N names I’ = () (7.140)

Now, by appropriate renaming of bound type names (using (7.135) and
(7.140)), we can assume

(T"UDom ©) N Dom ©' = () (7.141)

By applying induction to (7.136), (7.137), (7.133), (7.139), and (7.141), we
have ¢ # wrong and there exists ©; such that

(0" + ©,) is closed (7.142)
(T"UDom(© + ©')) NDom ©; =) (7.143)
©0+0'+0; =p: I (7.144)

From (7.141) and (7.143), we have

Dom © N Dom(©' + ©;) =) (7.145)

Now, from Proposition 7.4.2 and from (7.137) and (7.145), we have

©+60+6,=D:T (7.146)

138 CHAPTER 7. THE LANGUAGE INTML
Now, from the definition of the consistency relation and from (7.146) and
(7.144), we have

©4+0 +0, =(D+p): (I'+1I") (7.147)

By inspection of the evaluation rules and from (7.138) and (7.139), we see
that rule 7.50 is used, thus, we have

D+oter(e)~r (7.148)
From (7.136) and from (7.142), we have
(0 + 0"+ 06,) is closed (7.149)

By applying induction to (7.149), (7.147), (7.134), and (7.148), we have
r # wrong, as required, and there exists ©y such that

O, is closed (7.150)
(T"UDom(0 + ©' + ©1)) N Dom O, = () (7.151)
©4+0' +0,+0,=r:T (7.152)

It follows from (7.149) and (7.150) that we have (©' + ©; + O,) is closed,
as required. Moreover, from (7.141), (7.143), and (7.151), we have (T' U
Dom ©) N Dom(©' + ©; + ©3) = (), as required.

‘CASE d = valdec z : P .7 = e‘ From assumptions and from rule 7.7, we
have

x ¢ names I’ (7.153)

o =VYa®) 1 (7.154)
FFe:T (7.155)

tyvars o®) N tyvars I = () (7.156)
I = {2 0} (7.157)
OED:T (7.158)
DFer(d)~ o (7.159)

© is closed (7.160)

By inspection of the evaluation rules and from (7.159), we have that there
exists 7 such that

DFer(e)~r (7.161)

7.4. TYPE SOUNDNESS 139

By applying induction to (7.160), (7.158), (7.155), and (7.161), we have
r # wrong and there exists ©' such that (7’U Dom ©) N Dom ©' = (), as
required, and

©' is closed (7.162)
O+ Er:T (7.163)

From Proposition 7.4.1 and from (7.160), (7.162), and (7.163), we have
© + ©' E=r: S(r) for any substitution S (7.164)

From the definition of the consistency relation, from the definition of gener-
alisation, and from (7.154), we have
O+0 Er:o (7.165)

By inspection of the evaluation rules and from (7.159) and (7.161) and be-
cause r # wrong, we see that rule 7.52 is used, thus, ¢ # wrong, as required;
in fact

o={z—r} (7.166)

It follows from the definition of the consistency relation and from (7.165),
(7.157), and (7.166) that we have © + ©' = g : T, as required.

| CASE d = datdec o™t = ¢| From assumptions and from rule 7.8 and
rule 7.57, we have ¢ # wrong, as required. Moreover, we have

I' = {t = {c— Va¥.a®t}} (7.167)
o=1{} (7.168)

Let © = © of I'. From the definition of the consistency relation and from
(7.167) and (7.168), we have ©’ is closed and © + ©' = p : [, as required.

‘CASE d=d ; dg‘ From assumptions and from rule 7.9, we have

'Hd;: Ty 7.169
'+ Fdy: Ty 7.170
I"=T,+Ty 7.171
DFd~p 7.172

=0 of T
Dom ©' N Dom © =)
© is closed

(7.169)
(7.170)
(7.171)
(7.172)
OFD:T (7.173)
(7.174)
(7.175)
(7.176)

140 CHAPTER 7. THE LANGUAGE INTML

By inspection of the evaluation rules, we see that either rule 7.54, rule 7.55,
or rule 7.56 is used; in all cases, there exists p; such that

DFdy~ o1 (7.177)
Let ©; = © of I'y. From (7.171), (7.174), and (7.175), we have
Dom ©; N Dom © = () (7.178)

Let ©5 = © of I'y. By applying induction to (7.176), (7.173), (7.178), (7.169),
and (7.177), we have p; # wrong and there exists ©) such that

0+6,+6, g Iy (7.179)
(T'UDom ©, UDom(0 + 0;)) N Dom ©} = (7.180)
(01 4+) is closed (7.181)

From (7.176) and from (7.181), we have
(© + ©1 + ©)) is closed (7.182)

Moreover, from (7.178) and from (7.180), we have Dom © NDom(©; +0) =
(), thus, from Proposition 7.4.2 and from (7.173), we have

©O+6,+0=D:T (7.183)

Now, from the definition of the consistency relation and from (7.183) and
(7.179), we have

From (7.171), (7.174), (7.175), we have Dom ©3 N Dom © = (). Moreover,
from Proposition 7.2.1 and from (7.170), we have Dom ©, N Dom ©; = ().
Thus, from (7.180), we have

Dom ©; NDom(© + ©; + ©)) =0 (7.185)

By inspection of the evaluation rules and because g; # wrong, we see that
either rule 7.54 or rule 7.56 is used; in both cases, there exists g such that

D+ o1 kdy~ 00 (7.186)

7.4. TYPE SOUNDNESS 141

By applying induction to (7.182), (7.184), (7.170), (7.186), and (7.185), we
have g9 # wrong and there exists ©f, such that

(T UDom(® + ©; + 0 + 03)) N Dom ©), = (7.188)
(©2 4+ ©35) is closed (7.189)

By inspection of the evaluation rules, we see that rule 7.54 is used, thus, we
have ¢ # wrong, as required; in fact, we have o = p; + 5.
From (7.185) and from (7.188), we have

Dom(O + ©; + ©)) N Dom(©, + 64) =0 (7.190)
Now, from Proposition 7.4.2 and from (7.179), we have
O+0,+0+60,+0, =0 : (7.191)

From the definition of the consistency relation and from (7.191) and (7.187),
we have

©+0:+01+0:+ 05 = (o1 +02) : (T +T)
as required. Moreover, from (7.181) and from (7.189), we have (©; + O} +
O, + ©)) is closed. Finally, from (7.180) and from (7.188), we have

(T U DOIII(@ + 0 + @2)) N Dom(@'l + 912) =0

as required.

The required result follows from assumptions, from the defi-

nition of the consistency relation, from rule 7.10, and from rule 7.57. a

To summarise, the following corollary expresses that closed well-typed
IntML declarations cannot go wrong; the corollary is a direct consequence of
Proposition 7.4.3:

Corollary 7.4.4 (Weak type soundness) If {} - d: T and {} - er(d) ~
0 then o # wrong.

142 CHAPTER 7. THE LANGUAGE INTML

7.5 Datatypes with More Value Constructors

In this section, we illustrate how datatypes in IntML can be extended to allow
for multiple value constructors. First, datatype declarations are extended to
take the form

datdec ot =¢; | -+ | ¢, wheren >1

and function expressions are extended to either be of the form Az : 7.e or of
the form
Acp:T.ep | -+ le,:7e, wheren>1

For both language constructs, we require as a syntactic restriction that the
value constructors ¢; thorough ¢, are distinct.

Second, the typing rules 7.8 and 7.1 are extended appropriately. Here is
the new rule for datatype declarations:

t&names ' arityt =k o= Vol okt

7.192
I'Fdatdec a®t=c | - lcp: {t={c1—= 0, -, ch— 0}} ()
And here is the new rule corresponding to rule 7.1:
7 =78t Dom(T(t)) = {c1, -, cn}
L)) =7 The:7 i=1.n (7.193)

FEXeg:7mer | -+ lep:Te,:7— T

Each of the propositions demonstrated in Section 7.2 also holds when IntML
are extended to allow for datatypes with multiple value constructors.
The dynamic semantics of IntML is extended to allow closures of the form

(Aer.er | -+ | cpeen, D)

where e; thorough e, are IntML untyped expressions, c¢; thorough ¢, are
constructors, and D is a dynamic environment. The dynamic semantics is
modified by substituting rules 7.41, 7.46, and 7.47 with the following four
rules:

Expressions (Modified)

7.194
DF \x.e ~ (Az.e,D) ()

7.5. DATATYPES WITH MORE VALUE CONSTRUCTORS 143

7.195
DEXerer | -+ | epen~ {Aerer | -+ | cp.epn, D) ()
DEe~ (Acper | -+ | cy.en,Dy)
DrFe~c¢ Dybe~r ie{l,---,n}
7.196
DbEee ~r ()
DEe~ (Acier | -+ | cyen, Do)
DrFe~r ré{e, e}t (7.197)

Dt e e ~ wrong

Type soundness can now be proved for the modified IntML language by
modifying the consistency relation of Section 7.4 to relate closures to function
types as follows:

e O = (\r.e,,D) : ; — 7 iff there exist a typed expression e and a
typing environment I" such that © =D :Tand '+ Az :me: 1 — 7
and er(e) = e,

e O = (Acrel | -+ | ¢y, D) : 7y — 7y iff there exist typed expressions
e; thorough e, and a typing environment I' such that © =D : T' and
C'FXey:mer | oooo | ¢yt Tieen 0 71— To and er(e;) = e for all
ie{l,--,n}

The interesting case to inspect in the proof of type soundness is the case
for function application. Here the type name environment in the consistency
relation captures the set of constructors associated with a type name, thereby
ensuring that a function of the form

Acp.ep | -+ | cpeey

is not applied to values different than ¢; thorough c,.

144 CHAPTER 7. THE LANGUAGE INTML

Chapter 8

Static Interpretation of
Modules

In this chapter, we show how ModML programs that do not contain opaque
signature constraints (see Chapter 5) can be interpreted at compile time
and translated into IntML programs in such a way that IntML phrases are
generated only for ModML Core language phrases.

There are three important aspects to the interpretation of ModML pro-
grams. First, structures are flattened during translation; as we have seen
in the previous chapter, the IntML language does not have any constructs
for collecting declarations in any structure-like way. The interpretation of
ModML programs translates declarations in ModML structures into top-
level IntML declarations. To avoid name clashes, the interpretation chooses
fresh variables for all generated IntML bindings and maintains a mapping
from ModML identifiers to IntML variables.

The second important aspect to the interpretation of ModML programs is
that functors are specialised for each application. Although there is a poten-
tial possibility for an increase in code size, ModML functors are not allowed to
be recursive, thus, the interpretation terminates. Moreover, experience with
large software projects that use Standard ML Modules extensively, such as
the ML Kit and the Standard ML of New Jersey compiler, indicates that few
functors are applied twice or more.

The third important aspect to the interpretation of ModML programs is
that signature constraints are dealt with by translation environment process-
ing, only; no IntML phrases are generated for signature constraints. In the
case a value component of a structure is made less polymorphic by a signa-

145

146 CHAPTER 8. STATIC INTERPRETATION OF MODULES

ture constraint, the instantiation is captured in the translation environment
and code generation for the instantiation is postponed till the value compo-
nent of the constrained structure is accessed. As an example, consider the
ModML program

datatype s = A

structure S = struct val id = fn b => b
end : sig val id : s -> s end

val a = S.id A

This program translates into the IntML declaration

datdec t =c¢
valdec z : Va.ao = a = Ay : .Y,
valdec z :t = T4y C

where ¢ is an IntML constructor associated with the identifier A, ¢ is a type
name with arity 0, and x, y, and z are IntML variables associated with the
identifiers id, b, and a, respectively.

In the following sections, we formalise the interpretation of ModML pro-
grams. We then proceed to demonstrate that all typable ModML programs
that have no opaque signature constraints are translatable. In Section 8.7, we
show type correctness of the translation. Finally, in Section 8.8, we demon-
strate type soundness for ModML in the sense that if a well-typed ModML
program translates into an IntML declaration then, according to the dynamic
semantics of IntML, this declaration does not go wrong.

8.1 Semantic Objects

The semantic objects of the translation include the semantic objects of elab-
oration as defined in Figure 2.2 on page 12. The additional semantic objects
are shown in Figure 8.1.

Translation value environments map value identifiers to entries of the
form (o,is,a : ¢'), where o is the type scheme for the value identifier, is is
the identifier status of the value identifier (v or c), and «a : ¢’ is a pair of an
IntML variable and a type scheme ¢’. The type scheme ¢’ is the type scheme
for the IntML variable a. Because a value component of a structure can be
made less polymorphic by a signature constraint, the type scheme ¢’ can be
more general than the type scheme o.

8.2. WEAKENING 147

SE € TStrEnv = Strld =2 TEnv
TValEnv = VId -2 TValEntry
TValEntry = TypeScheme x IdStatus
x (IVar U ICon) x TypeScheme
TEnv = TStrEnv x TyEnv x TValEnv
TFunEnv = Funld -2 FunClos
FunClos = TBasis x Strld x StrExp x FunSig
TBasis = TFunEnv x TEnv

<
™
m

—
Q
.
»
S
q\
~
m

=
m m m m

Figure 8.1: Additional semantic objects of translation.

To postpone the interpretation of a functor body till the functor is applied,
a functor identifier is mapped to a functor closure, which is a quadruple of
the form (B, strid, strexp, ®), where B is a translation basis for capturing
free variables of the functor, strid is a structure identifier for the formal
parameter, strexp is the functor body, and & is the functor signature for the
functor.

8.2 Weakening

When A is some translation environment or translation basis, we define weak-
ening of A, written A, to be the elaboration object derived from the trans-
lation object A by erasing all translation information that is not present in
the corresponding elaboration object:

(F,&) = (F, &)

F = {funid — F(funid) | funid € Dom F}
(B, strid, strezp, ®) = @
(SE, TE, VE) = (SE,TE,VE)

SE = {strid — SE(strid) | strid € Dom SE}

VE = {wvid — VE(vid) | vid € Dom VE}

148 CHAPTER 8. STATIC INTERPRETATION OF MODULES

(0,is,a:0") = (o,1is)

8.3 Enlargement

Enlargement relates translation environments much as enrichment relates
elaboration environments (see Section 2.16 on page 24).

A translation value environment entry (oi,is1,a; : o) enlarges another
such object (09, is2,as : 04), written (01,81, a1 : 07) > (09, i89, a9 : 04), if
(01,181) > (09, is9) and (a7 : o}) = (ag : 7).

Enlargement is extended to environments, inductively, as follows. A
translation environment & = (S&;, TE1,VE;) enlarges another translation
environment & = (S8&,, TEy, VE,), written & > &, if

1. Dom 8&; O Dom SE&; and S&;(strid) > SEy(strid) for all strid €
Dom S8¢&,

2. TE, = TFE,
3. Dom V&, O Dom V&, and V&, (vid) > VE,(vid) for all vid € Dom V&,

The following proposition states parts of the relationship between the
notion of enrichment and the notion of enlargement:

Proposition 8.3.1 If£ > &' then & = £'.

PROOF The proof is a simple inductive argument over the structure of £’.
O

8.4 From ModML Core to IntML

We first present rules for translating ModML Core phrases into IntML phrases.
The rules allow inferences among sentences of the form

EFexp=rT,e

where £ is a translation environment, erp is a ModML expression, 7 is a
type, and e is an IntML expression, and of the form

EF dec = (N)(E',4d)

8.4. FROM MODML CORE TO INTML 149

where £ and £’ are translation environments, dec is a ModML declaration,
N is a set of names, and d is an IntML declaration. Sentences of the former
form are read “ezp translates to (7,e) in £.” Sentences of the latter form
are read “dec translates to (N)(E’,d) in £.” The prefix (V) in objects of the
form (N)(€,d) binds names and we identify such objects up to renaming of
bound names and deletion of names from the prefix that do not occur in the
body (&,d).

Expressions EFexp=T, e‘

E(longvid) = (o,is,a:0") o' =T

8.1
EF longuid = 7,0, (8.1)
z ¢ names & wvid ¢ Dom £ or is of E(vid) =v

E+{vid— (r,v,z:7)} Fexp=T'e (8.2)

EFfn' vid =>erp=>T1T— T, \x:Te ’
E(longvid) = (o,c,c:0) o=717 EFexp=1e (8.3)

E+ £n° longvid => exp =7 — 7', Ac: T.e)
Erep, =17 o169 EFexp=1 e (8.4)

EF exp, exp, = T, €1 €9 ’

EF dec= (N)(E',d) N Nnames(E,7)=10

E+E&Ferp=rT,e (8.5)

£+ let dec in exp end = T,let d in e

Comment:

(8.1) The type scheme ¢’ is the type scheme for the IntML variable a. Be-
cause a value component of a structure can be made less polymorphic by a
signature constraint, the type scheme ¢’ can be more general than the type
scheme ¢, which is the type scheme for longuvid. A global well-formedness
condition on £ ensures that we also have ¢ > 7. We shall later see that
this well-formedness condition is maintained by the rules.

150 CHAPTER 8. STATIC INTERPRETATION OF MODULES

Declarations EF dec = (N)(&',d)

tyvars a® Ntyvars E=0 o =Val® .1
Eremp=r1e & ={vid— (o,v,x:0)} 1z ¢&namesE

8.6
£ Fval vid = exp = ({z})(£',valdec z: a®).7 = ¢) (8.6)
tyvarseqg = o®) arity t =k o = Vaol®.a®)t
VE = {vid — (0,c)} VE = {vid — (0,c,c:0)}

E" = ({tycon — (t, VE)},VE) (8.7)

£ F datatype tyvarseq tycon = vid = ({t,c})(€',datdec a®t =¢)
tyvarseq = o®) Ekty =71 & = {tycon — (Aa® .7, {})} (8.8)

E F type tyvarseq tycon = ty = (0)(&',¢) '

E(l trid) =& Dom &' =1

(longstrid) om (8.9)

& open’ longstrid = (0)(E'¢)

Comment:

(8.8) and (8.9) No code is generated for type declarations or for open dec-
larations.

8.5 Static Interpretation

The rules for interpreting ModML Modules phrases into IntML declarations
allow inferences among sentences of the form

B+ phrase = (N)(A,d)

where B is a translation basis, phrase is either a structure-level declaration, a
structure-level expression, or a top-level declaration, A is either a translation
environment or a translation basis, N is a set of names, and d is an IntML

declaration; sentences of this form are read “phrase translates to (N)(A,d)
in B.”

8.5. STATIC INTERPRETATION 151

Structure-level Declarations B & strdec = (N)(€,d)
EF dec = (N)(,d) (8.10)
(F, &) F dec = (N)(&,d) '
B strezp = (N)(£,d) (8.11)
B |- structure strid = strexp = (N)({strid — £}, d) '
B I strdec; = (Nl)(gl, dl) (Nl U Nz) N names B =0
B+ & F strdecs = (NQ)(EQ, dg) No N (N1 U names(&, d1)) = @ (8 12)
Bt strdec, strdecy = (Ny U Ny)(Ey + Eo,dy ; dy) '
8.13
Bre= 00,9 &1
Structure-level Expressions B strexp = (N)(&,d)
B strdec = (N)(€,d) (8.14)
Bt struct strdec end = (N)(€,d) '
B(longstrid) = & (8.15)
B+ longstrid = (0)(€, €) '
Bt strexp = (N)(E,d) Bt sigerp = ¥
Y>& £>& NnNnames B=10 (8.16)
B = strexp : sigexp = (N)(E',d) '
B & strexp = (N)(E,d) B(funid) = (B, strid, strezp,, ®)
®> (& (TYE) T CN E>¢&
(NUN;)Nnames B=0 N; N (N Unames(E,d)) =0
By + {strid — E'} F strexpy = (N1)(E1, dy) (8.17)

B funid (strezp) = (N U Np)(&1,d ; dy)

152 CHAPTER 8. STATIC INTERPRETATION OF MODULES

Top-level Declarations B+ topdec = (N)(B',d)

B+ strdec = (N)(E,d)

8.18
B & strdec = (N)(({},€),d) (8.18)
Bt sigezp = (T)E T Ntynames B =)
B+ {strid — E} & strezp = %
F = {funid — (B, strid, strezp, (T)(F,X))} (8.19)
B functor funid (strid : sigexp) = strezp = (0)((F,{}),¢) .

B topdec, = (N1)(Bi,d1) (N;U Ns) Nnames B =10
B + Bl H topd602 = (NQ)(BQ, dg) N2 N (N1 U names(Bl, dl)) = @

B+ topdec, topdecy = (N1 U No)(By + B, dy ;5 db)

(8.20)

Bte= (0){},¢) (8:21)

Comment:

(8.19) Interpretation of the functor body is delayed until the functor is ap-
plied.

8.6 Translatability

In this section, we demonstrate that if a ModML program is typable under
some assumptions B, according to the static semantics for ModML presented
in Chapter 2, then the ModML program may be translated into an IntML
declaration, under assumptions that are related to B. To be able to state
a proposition expressing this property, we first need to define a notion of
well-formedness of translation environments and translation bases.
Well-formedness of translation environments and translation bases ex-
presses that (1) the type scheme for a value identifier is an instance of the
type scheme for the associated IntML variable (or IntML constructor), (2) if
the identifier status for a value identifier denotes a constructor then the value

8.6. TRANSLATABILITY 153

identifier is associated with an IntML constructor, and finally, (3) a functor
body in a functor closure must be translatable under appropriate assump-
tions with appropriate result. Well-formedness of a translation environment
or a translation basis A is written + A and is defined inductively by the
following inference rules:

Well-Formedness -
FE
F F(funid) for all funid € Dom F 52
F(F,€))

F SE(strid) for all strid € Dom S&
F VE(vid) for all vid € Dom V&

8.23
- (SE, TE, VE) (8.23)
o -0
8.24
F(o,v,a:0) (8.24)
a € ICon (8.25)
F(0,c,a:0) '
FB
Y(E,(T)E') < ®, VE. (FE AE=E).3(N)(E,d) .
(B+ {strid — E} - strezp = (N)(E',d) ANDT A
FEANE=E")
(8.26)

F (B, strid, strexp, ®)

As discussed in Section 8.3, there is a close relationship between the
notion of enrichment for the static semantics of ModML and the notion of
enlargement; indeed, the following proposition holds:

Proposition 8.6.1 If + & and £ = E then there exists £ such that £ > &'
and &' = F and + &'

154 CHAPTER 8. STATIC INTERPRETATION OF MODULES

ProOOF The proof is a simple inductive argument over the structure of F,
using transitivity of type scheme generalisation. O

The following proposition states that if a ModML declaration is typable
under some assumptions F then the declaration is also translatable under
assumptions related to F.

Proposition 8.6.2 (Core translatability) If £ - dec = (T)E' and + &
then there exists (N)(E',d) such that € F dec = (N)(E',d) and N O T and
FE& and & = E'. Moreover, if €+ exp = 7 and F & then there exists e
such that € - exp = 7, €.

ProOF The proof is by induction on the structure of dec and ezp.

CASE exp = longm’d‘ From assumptions and from rule 2.4, we have

E(longvid) = (o, is) (8.27)
o-T (8.28)
-E (8.29)

From (8.27) and from the definition of weakening we have that there exist o’
and a such that

E(longvid) = (o0, is,a : o) (8.30)

Moreover, from (8.29), from (8.30), from the definition of well-formedness,
and from reflexivity of type scheme generalisation, we have ¢’ > o. Thus,
from (8.28) and from transitivity of generalisation, we have

o -7 (8.31)

Now, from rule 8.1 and from (8.30) and (8.31), we have £ - exp = T, a,, as
required.

CASE exzp = fn° vid => exp’ ‘ From assumptions and from rule 2.6, we have

E(longvid) = (o, c) (8.32)
o -7 (8.33)
Eremp =1 (8.34)

Eremp=1 =1
-E (8.35)

8.6. TRANSLATABILITY 155

From (8.32), from (8.35), from the definition of well-formedness, and from
the definition of weakening, we have there exists ¢ € ICon such that

E(longvid) = (o,c,c: o) (8.36)
By applying induction to (8.34) and (8.35), we have there exists e such that
Eremp' =1 e (8.37)

Now, from rule 8.3 and from (8.36), (8.33), and (8.37), we have £ - ezp =
71 — 7', Ac : 71.€, as required.

CASE ezp = let dec in ezp’ end| From assumptions and from rule 2.8, we
have

E+ dec = (T)E' (8.38)
E+FErerp =1 (8.39)
T N tynames(E,7) = () (8.40)
& (8.41)

such that

EF dec= (N)(&',d) (8.42)
NDT (8.43)
HE (8.44)
& =F (8.45)
By appropriate renaming of bound names, we have
N Nnames(&,7) =0 (8.46)

From (8.41), from (8.44), and from the definition of well-formedness, we have
- (E+ & (8.47)

Now, from (8.39), from (8.45), and from the definition of weakening, we have

E+EFexp =T (8.48)

156 CHAPTER 8. STATIC INTERPRETATION OF MODULES

By applying induction to (8.47) and (8.48), we have there exists e such that
E+EFexp =T € (8.49)

Now, from rule 8.5 and from (8.42), (8.46), and (8.49), we have £ - ezp =
T,1let d in e, as required.

CASE dec = val wid = e:cp‘ From assumptions and from rule 2.9, we have

Eremp=T (8.50)

tyvars a®) N tyvars £ = () (8.51)
€+ dec = (D)E

o=Va® 7 (8.52)

E' = {vid — (o,v)} (8.53)

-E (8.54)

By appropriate renaming of bound type variables, we have
tyvars a®) N tyvars £ = () (8.55)
By applying induction to (8.50) and (8.54), we have there exists e such that
EFexp=rTe (8.56)
Now, choose x € ICon such that
x ¢ names & (8.57)

Let &' = {vid — (o,v,z : 0)}. From reflexivity of type scheme generalisation
and from the definition of well-formedness, we have F &£'. Moreover, from
the definition of weakening and from (8.53), we have £ = E'. It follows from
rule 8.6 and from (8.55), (8.52), (8.56), and (8.57) that we have £ - dec =
({z})(&',valdec z : o®) .7 = ¢), as required.

‘CASE dec = datatype tyvarseq tycon = m’d‘ From assumptions and from
rule 2.10, we have

tyvarseq = o) (8.58)

arity t =k (8.59)

VE = {vid — (0,¢)} (8.60)

E' = ({tycon — (t, VE)}, VE) (8.61)
o = Vak okt (8.62)

T = {t} (8.63)

8.6. TRANSLATABILITY 157

Let V€ = {vid — (0,¢c,c:0)} and let & = ({tycon — (¢, VE),VE). From
rule 8.7 and from (8.58), (8.59), (8.62), and (8.60), we have

£+ dec = (N)(E',datdec a®t = ¢) (8.64)
N ={t,c} (8.65)

From (8.63) and from (8.65), we have N D T, as required. Moreover, from
the definition of well-formedness, we have F &', as required. Further, from
the definition of weakening and from (8.60) and (8.61), we have &' = F', as
required.

The proofs for the remaining cases follow similarly. O

The previous proposition extends to other ModML phrases. But before we
state such a proposition for ModML, we shall first demonstrate the following
proposition concerning realisation of functor bodies:

Proposition 8.6.3 (Functor instance typeability) If B+{strid — E} -
stretp = ¥ and T N tynames B = () and (T)(E,X) > (E'",Y') then B +
{strid — E'} I~ strezp = X'.

PrROOF From the definition of functor signature instantiation in Section 2.15

on page 23 and from assumptions, we have that there exists a realisation ¢
such that

o(E,X) = (F',X) (8.66)

Supp ¢ C T (8.67)

From Proposition 3.1.11 and from assumptions, we have
©(B + {strid — E}) = strexp = p(2) (8.68)

Now, from assumptions, we have 7' N tynames B = (), thus, from (8.66),
(8.67), and (8.68), we have B + {strid — E'} & strexp = ¥, as required. O

Using the previous proposition we can now demonstrate that if a ModML
phrase is typable under some assumptions B then the phrase is translatable
under assumptions related to B.

158 CHAPTER 8. STATIC INTERPRETATION OF MODULES

Proposition 8.6.4 (Module translatability) Let phrase be either a structure-
level declaration, a structure-level expression, or a top-level declaration. More-
over, let A be either an elaboration environment or an elaboration basis
and let A be either a translation environment or a translation basis. If

B + phrase = (T)A and + B then there exists (N)(A,d) such that
Bt phrase = (N)(A,d) and N DT and + A and A= A.

PRrROOF The proof is by induction over the structure of strdec, strexp, and
topdec.

| CASE strdec = dec| The desired result follows directly from rule 2.28,
rule 8.10, and Proposition 8.6.2.

‘CASE strdec = strdecy strdecg‘ From assumptions and from rule 2.30, we
have

B+ strdecy = (T1)Ey
(Ty UT,) Ntynames B = ()
B+ E, & strdecy = (T)E,
Ty N (T} U tynames E;) = ()
Bt strdec = (T, UTy)(E) + Es)
- B (8.73)

We can apply induction to (8.69) and (8.73) to get there exists (Ny)(&1,d1)
such that

B & strdec; = (N1)(&1,dq) (8.74)
N DT (8.75)

Fé& (8.76)

& =E, (8.77)

By appropriate renaming of bound names, we can assume
N; Nnames B = () (8.78)
From the definition of weakening and from (8.71) and (8.77), we have

B+ & F strdeco = (1) Es (8.79)

8.6. TRANSLATABILITY 159

Moreover, from (8.76) and (8.73) and from the definition of well-formedness,
we have

F(B+&) (8.80)

We can now apply induction to (8.79) and (8.80) to get there exists
(N2) (&, dg) such that

B+ & strdeco = (NQ)(gQ, dz) (881)
Ny DTy (8.82)
& (8.83)
By appropriate renaming of bound names, we can assume
N> Nnames B = () (8.85)
N, N (Ny Unames(&;,dy)) =0 (8.86)

Now, from rule 8.12 and from (8.74), (8.78), (8.85), (8.81), and (8.86), we
have
B strdec = (N1 U NQ)(gl + 82, dy ; dg)

Moreover, from (8.75) and (8.82), we have (N; U Ny) 2 (71 U T3) and from
(8.76), from (8.83), and from the definition of well-formedness, we have
(€1 + &). From (8.77) and from (8.84), we also have & + & = E) + Es, as
required.

CASE strexp = strexp’ : sigerp| From assumptions and from rule 2.25, we
have

Bt strezp’ = (T)E (8.87)
Bt sigezp = X (8.88)
S>E <E (8.89)
T N tynames B = () (8.90)

B+ strexp = (T)E'
- B (8.91)

By applying induction to (8.91) and (8.87), we have there exists (N)(&,d)
such that

B+ strexp’ = (N)(€,d) (8.92)

160 CHAPTER 8. STATIC INTERPRETATION OF MODULES

NDT (8.93)
=& (8.94)
E=FE (8.95)
By appropriate renaming of bound names, we have
N Nnames B = () (8.96)

From Proposition 8.6.1 and from (8.95), (8.89), and (8.94), we have there
exists £ such that

E>E E=F (8.97)
& (8.98)

Now, from rule 8.16 and from (8.88), (8.92), (8.89), (8.97), and (8.96), we
have B F strexp = (N)(E’,d), as required.

CASE strexp = longstrid ‘ From assumptions and from rule 2.24, we have

B(longstrid) = E (8.99)
Bt strezp = (0)F
- B (8.100)

From the definition of weakening and from (8.99), we have there exists £
such that

B(longstrid) = & (8.101)
E=E (8.102)
Now, from rule 8.15 and from (8.101), we have
Bt strezp = (0)(&,¢)
Moreover, from (8.100) and from (8.101), we have F &, as required.

CASE strexp = funid (strexp’) | From assumptions and from rule 2.27, we
ave

B+ strexp’ = (T)E (8.103)
B(funid) =® & > (E",(T")E") (8.104)
E - E" (8.105)

(T UT") N tynames B = () (8.106)

Bt strezp = (T UT')E'
- B (8.107)

8.6. TRANSLATABILITY 161

We can apply induction to (8.107) and (8.103) to get there exists (N)(&, d)
such that

B+ strexp’ = (N)(€,d) (8.108)
NDT (8.109)
-E (8.110)
E=FE (8.111)
By appropriate renaming of bound names, we can assume
N Nnames B=0 (8.112)

From (8.105) and from (8.111), we have £ >~ E", hence, from Proposi-
tion 8.6.1 and from (8.110), we have there exists £’ such that

E>E & =E" (8.113)

& (8.114)

From (8.104) and from the definition of weakening, we have there exists a
functor closure ¢l = (By, strid, strezpy, ®') such that & = " and

B(funid) = cl (8.115)

Now, from (8.107), from (8.115), from the definition of well-formedness, and
from (8.104), (8.114), and (8.113), we have that there exists (N;)(&, d;) such
that

By + {strid — E'} b strezpy = (N1)(E1,dy) (8.116)
N 2T (8.117)
- & (8.118)
& =F (8.119)
By appropriate renaming of bound names, we can assume
Ni Nnames B =) (8.120)
N1 N (N Unames(€,d)) =0 (8.121)

Now, from rule 8.17 and from (8.115), (8.104), (8.117), (8.119), (8.108),
(8.113), (8.112), (8.120), (8.116), and (8.121), we have

B+ strexp = (N U N;p)(&1,d ; dy)

162 CHAPTER 8. STATIC INTERPRETATION OF MODULES

Moreover, from (8.109) and from (8.117), we have (N U N;) D (T'UT"), as
required.

‘CASE topdec = functor fumid (strid : sigexp) = stremp‘ From assump-
tions and from rule 2.33, we have

B+ sigexp = (T)E (8.122)
T N tynames B = () (8.123)
B + {strid — E} strezp = %. (8.124)
¢ = (T)(E,X) (8.125)
F = {funid — ®} (8.126)
Bt topdec = (0)(F, {})
- B (8.127)
By appropriate renaming of bound names, we can assume
T Nnames B = () (8.128)
Let (E1, (T2)E,) be a functor instance such that
O > (Ey, (T2)E,) (8.129)
Moreover, let £ be a translation environment such that
F& (8.130)
S =E (8.131)

From Proposition 8.6.3 and from (8.124), (8.123), and (8.129), we have
B+ {strid — E\} - strexp = (1) E, (8.132)

It now follows from (8.131), from (8.132), and from the definition of weak-
ening that we have

B+ {strid — &} F strezp = (12) Es (8.133)

Moreover, from (8.127), from (8.130), and from the definition of well-
formedness, we have

F (B + {strid — &1}) (8.134)

8.7. TYPE CORRECTNESS 163

We can now apply induction to (8.133) and (8.134) to get there exists
(N2) (&, dg) such that

B+ {strid — &} F strezp = (N2)(Ea, d2) (8.135)
Ny DTy (8.136)
- & (8.137)
& =E, (8.138)
Now, let F be the translation functor environment
F = {funid — (B, strid, strezp, ®)} (8.139)

It follows from (8.126), from (8.139), and from the definition of weakening
that we have

(F D) =EAD (8.140)

Moreover, from the definition of well-formedness and from (8.135), (8.136),
(8.137), (8.138), and (8.139), we have

= (F,{}) (8.141)

From rule 8.19 and from (8.122), (8.124), (8.139), (8.125), and (8.128), we
have

Bt topdec = (0)((F,{}),¢)

as required.

CASE topdec = topdec, topdec,| The proof for this case is similar to the
proof for the case where strdec = strdec, strdecs.

The proofs for each of the remaining cases either follow directly or follow
directly by induction. O

8.7 Type Correctness

We now demonstrate that if a ModML program is translated into an IntML
declaration under some assumptions B then the IntML declaration is typable
under assumptions that are related to B. The way in which assumptions must
be related are expressed by a type consistency relation. We write the relation

I'he A

164 CHAPTER 8. STATIC INTERPRETATION OF MODULES

where A is either a translation environment or a translation basis and where I'
is a type environment. Type consistency expresses that all IntML variables
and IntML constructors in value entries in A are associated to the same
type schemes as in ['. The relation is defined inductively by the following
equations:

o 'k (SE, TE,VE) iff T k. € for all £ € Ran SE and I'(z) = o' for
all (0,is,z : 0') € Ran V€ and I'(t)(c) = o’ and o' = Va¥).a®)t for all
(0,is,c: 0') € Ran VE

o 'k (F,E) iff 'k € and I' i, B for all (B, strid, strezp, ®) € Ran F

To prove type correctness of the translation, we must first demonstrate
some properties of type consistency.

Proposition 8.7.1 IfT'; k. £ and Dom I')NDom Ty = @) then (I'1+1y) ke €.

PROOF The proof is by induction over the structure of £. Write £ in

the form (S&, TE,VE). From assumptions and from the definition of type
consistency, we have

I'y K € for all £ € Ran S& ()

[(z) = o for all (o,is,z : ') € Ran VE (8.143)

[1(t)(c) = o' and o = Va®).a®t for all (o, is,c : 0') € Ran VE(8.144)

Dom I'y N Dom T'y = () (8.145)

(8.145)

8.145

8.142

By applying induction for each £ € Ran S&, we have from (8.142) and
that

' + 9 ke € for all £ € Ran SE (8.146)
From (8.145) and from (8.143), we have
(T'y + Ty)(z) = o for all (o, s,z : 0') € Ran VE (8.147)

Moreover, from (8.145) and from (8.144), we have
(Ty +T9)(t)(c) = ¢’ and o' = Va'b) .ak)t

for all (o,1is,c: 0') € Ran V& (8.148)
Now, from the definition of type consistency and from (8.146), (8.147), and
(8.148), we have (I'y + I'y) ¢ £, as required. O

The preceding proposition extends to bases as follows:

8.7. TYPE CORRECTNESS 165

Proposition 8.7.2 IfT'; K. B and Dom I'y " Dom 'y = () then (I'y + ') ke
B.

ProOF The proof is by induction over the structure of B. Write B in the
form (F,&). From assumptions and from the definition of type consistency,
we have

I e € (8.149)
[y ke B for all (B, strid, strezp, ®) € Ran F (8.150)
Dom I' N Dom T’y = () (8.151)
From Proposition 8.7.1 and from (8.149) and (8.151), we have
Ty +Ty) ke € (8.152)

Moreover, from (8.150) and (8.151), we can apply induction for each B €
(B of Ran F) to get

(T'y + T'y) K¢ B for all (B, strid, strezp,) € Ran F (8.153)

Now, from the definition of type consistency and from (8.152) and (8.153),
we have (I'y + I'y) K. B, as required. O

The following proposition states that type consistency is closed under
extension of translation environments.

Proposition 8.7.3 IfT'1 k. & and (I'1+12) ke & and Dom I'y NDom T’y =
@ then (Pl + PQ) l_tc 81 + 52.

Proor Write & in the form (S, TE;,VE) and write & in the form
(SE9, TE,, VE,). From assumptions and from the definition of type consis-
tency, we have

I'y ke € for all £ € Ran 8&; (8.154)
I'i(z) = o' for all (o,is,z : ') € Ran V&, (8.155)
I'1(t)(c) = 0’ and o' = Va®) .ot

for all (o,is,a : ') € Ran V&, (8.156)

(T} 4 Ty) ke € for all £ € Ran S&s (8.157)

(I'y +Ty)(x) = o' for all (o,is,x : 0') € Ran V&, (8.158)
(T +T9)(t)(c) = o' and o' = Va¥.aF)t

for all (0, 14s,a : 0') € Ran V&, (8.159)

Dom I' N Dom T’y = () (8.160)

166 CHAPTER 8. STATIC INTERPRETATION OF MODULES

From Proposition 8.7.1 and from (8.160), (8.154), and (8.157), we have
(T; +T9) ke € for all £ € Ran(SE; + SE5) (8.161)
From (8.155), from (8.158), and from (8.160), we have
(Ty +Ty)(z) = o' for all (o,is,z : 0’) € Ran(VE, + VE2) (8.162)
Moreover, from (8.156), from (8.159), and from (8.160), we have

(Ty +T9)(t)(c) = ¢’ and o' = Va'¥) .okt
for all (o, is,c: 0') € Ran(VE; + VEs) (8.163)

Now, from the definition of type consistency and from (8.161), (8.162), and
(8.163), we have (I'y + T'y) ke (€1 + &), as required. O

The preceding proposition extends to bases as follows:

Proposition 8.7.4 IfT'y k. By and (I'1+Ty) K By and Dom I'tNDom 'y =
@ then (Fl + FQ) }_tc Bl + BQ.

Proor Write B; in the form (Fj, &) and write By in the form (Fy, &,).
From assumptions and from the definition of type consistency, we have

I he & (8.164)

(T4 +T5) he & (8.165)

[y K¢ B for all (B, strid, strezp, ®) € Ran F; (8.166)
(['y + Ty) ke B for all (B, strid, strezp, ®) € Ran F (8.167)
Dom I'y N Dom T'y = () (8.168)

From Proposition 8.7.3 and from (8.164), (8.165), and (8.168), we have
(T'1 +Ty) e (&1 + &) (8.169)

Moreover, from Proposition 8.7.2 and from (8.166), (8.167), and (8.168), we
have

(I'y + Ty) ke B for all (B, strid, strezp, ®) € Ran(F, + F,) (8.170)

Now, from the definition of type consistency and from (8.169) and (8.170),
we have (I'y + I'y) K¢ (By + By), as required. O

8.7. TYPE CORRECTNESS 167

Proposition 8.7.5 IfI'k. £ and € > &' then T' K, E'.

PROOF The proof is a simple inductive argument on the depth of inference.
O

The following proposition states that if a ModML declaration is trans-
lated under some assumptions £ into an IntML declaration then the IntML
declaration is typable under assumptions related to &.

Proposition 8.7.6 (Type correctness of Core translation) If€ - dec =
(N)(&',d) and T K¢ € then there exists I such that T Fd: T and (I'+1") ke
E' and Dom I C N. Moreover, if €+ exp = 1,e and 'k, € thenT'kFe: .

PrOOF The proof is by induction over the structure of exp and dec.

‘CASE erp = let dec in exp end‘ From assumptions and from rule 8.5, we
have

EF dec= (N)(&',d) (8.171)
N Nnames(&,7) =0 (8.172)
E+EFexp = T€ (8.173)

ErFep=rTletdine
Tk € (8.174)

By appropriate renaming of bound names, we can assume
N Nnames(T',7) = () (8.175)

By applying induction to (8.171) and (8.174), we have there exists I such
that

IHd: T (8.176)
T+1) kK & (8.177)
Dom " C N (8.178)

From (8.175) and from (8.178), we have
Dom I' N Dom I = () (8.179)
From Proposition 8.7.3 and from (8.174), (8.177), and (8.179), we have
(C+ D) ke (€+&) (8.180)

168 CHAPTER 8. STATIC INTERPRETATION OF MODULES

By applying induction to (8.173) and (8.180), we have
Fr+I'ke:7 (8.181)

Now, from rule 7.6 and from (8.176), (8.175), (8.178), and (8.181), we have
'+ 1et d in e : 7, as required.

CASE exp = longm’d‘ From assumptions and from rule 8.1, we have

E(longvid) = (o, is,a : o) (8.182)
o -7 (8.183)

Erexp=rT,a,;
Ik € (8.184)

There are now two cases to consider depending on whether ¢ is a variable or
a constructor.

We first consider the case where a is a constructor ¢. From the definition
of type consistency and from (8.184) and (8.182), we have

L(t)(c) =o' o =Va®.a® (8.185)

for some type name ¢t. From rule 7.5, from the definition of generalisation,
and from (8.183) and (8.185), we have I' - ¢, : 7, as required.

We now consider the case where a is a variable . From the definition of
type consistency and from (8.184) and (8.182), we have

['(z) =0 (8.186)
From rule 7.4 and from (8.183) and (8.186), we have I - z, : 7, as required.

CASE exp = fn° longvid => exp’| From assumptions and from rule 8.3, we
have

E(longvid) = (o,c,c: o) (8.187)

o> (8.188)

Ererp' = 1e (8.189)
Ererp=1 —71,A:T.€

ke € (8.190)

By applying induction to (8.189) and (8.190), we have
F'Fe:7 (8.191)

8.7. TYPE CORRECTNESS 169

From the definition of type consistency and from (8.190) and (8.187), we
have

['(t)(c) = o and o = Va® .okt (8.192)

for some type name t. Now, from rule 7.1, from the definition of generalisa-
tion, and from (8.188), (8.192), and (8.191), we have ' - A\c¢ : 1y.e : 4 — 7,
as required.

CASE ezp = fn' vid => exp’| From assumptions and from rule 8.2, we have

x & names & (8.193)

E+{vid = (r,v,z:7)}Fexp' = 7e (8.194)
Eremp=1—o71 Ar:TeE

Ik & (8.195)

By appropriate renaming of bound names, we can assume
z ¢ names ' (8.196)

From the definition of type consistency, we have (I' + {z — 7}) k. {z —
(1,v,z : 7)}, thus, from Proposition 8.7.3 and from (8.195) and (8.196), we
have

C+{z—71}) ke (E+{z— (r,v,z:7)}) (8.197)
By applying induction to (8.194) and (8.197), we have
F+{z—71}Fe:7 (8.198)

Now, from rule 7.2 and from (8.198) and (8.196), we have ' - Az : 7. : 7 —
7', as required.

CASE dec = val wid = exp‘ From assumptions and from rule 8.6, we have

tyvars a®) N tyvars £ = 0 ()
o =Val 1 ()
Etexp=rT,e (8.201)
&' ={vid — (o,v,z:0)} ()
x ¢ names & ()

£+ dec = ({z})(&',valdec 7 : o®) .7 = ¢)
[he & (8.204)

170 CHAPTER 8. STATIC INTERPRETATION OF MODULES
By appropriate renaming of bound names and of bound type variables, we
can assume

x € names T (8.205)
tyvars a®) N tyvars I' = () (8.206)

By applying induction to (8.201) and (8.204), we have
F'kFe:r (8.207)
Now, from rule 7.7 and from (8.205), (8.200), (8.207), and (8.206), we have

I'+valdec z:a®) r=¢ : T
I'={zw— o} (8.208)

Moreover, from the definition of type consistency and from (8.202) and
(8.208), we have (I' + I'') k. £'. We also have Dom I'" C {z}, as required.

‘CASE dec = datatype tyvarseq tycon = vid‘ From assumptions and from
rule 8.7, we have

tyvarseq = a(®) (8.209)
arity t =k (8.210)
o = Vo okt (8.211)
VE = {vid — (0,¢c)} (8.212)
VE = {vid — (0,¢c,c:0)} (8.213)
&' = ({tycon — (t, VE)}, VE) (8.214)
N = {t,c} (8.215)
d = datdec o¥t = ¢ (8.216)
By appropriate renaming of bound names, we can assume
t ¢ names I’ (8.217)

Let I'' = {t = {c — o}}. It follows from rule 7.8 and from (8.217) and
(8.210) that we have I' d : I, as required. Moreover, from the definition
of type consistency and from (8.214) and (8.212), we have (I' + ') k. £, as
required. Further, from (8.215), we have Dom [" C N, as required.

The proofs for the remaining cases follow similarly. O

The previous proposition extends to other ModML phrases as follows:

8.7. TYPE CORRECTNESS 171

Proposition 8.7.7 (Type correctness of Modules interpretation) Let
phrase be either a structure-level declaration, a structure-level expression, or
a top-level declaration. Moreover, let A be either a translation environment
or a translation basis. If B & phrase = (N)(A,d) and T' k. B then there
exists T' such that T = d :T" and (T +T") k. A and Dom I'" C N.

PrOOF The proof is by induction over the structure of strdec, strexp, and
topdec.

‘CASE strdec = dec‘ The required result follows from Proposition 8.7.6.

‘CASE strdec = strdecy strdeCQ‘ From assumptions and from rule 8.12, we
have

B+ strdec; = (Ny)(&1,d1)
(N1 U Ny) Nnames B =10
B+ &1 b strdecy = (N2)(Es, da)
Ny N (N; Unames(Ey,dy)) =0
B strdec = (N1 U No)(E1 + Ea,dy ;5 do)
[k, B (8.222)

By appropriate renaming of bound names, we can assume
(NyUNy) Nnames T = () (8.223)

By applying induction to (8.222) and (8.218), we have there exists I'; such
that

(L +Ty) he & (8.225)

By appropriate renaming of bound names, we can assume
No N (Ny Unames I'y) = 0) (8.227)

Now, from Proposition 8.7.4 and from (8.222), (8.225), (8.226), and (8.223),
we have

(T'+T) ke (B+&) (8.228)

172 CHAPTER 8. STATIC INTERPRETATION OF MODULES

By applying induction to (8.228) and (8.220), we have there exists I's such
that

(L' + Ty +172) Ke & (8.230)

From rule 7.9 and from (8.224) and (8.229), we have
'k d1 3 d2 . Fl + FQ (8232)

Now, from Proposition 8.7.4 and from (8.225), (8.230), (8.226), (8.231), and
(8.227), we have (I'+T'1 +T'9) K¢ (&1 +&2). Moreover, from (8.226) and from
(8.231), we have Dom(I'; 4+ I's) C (N7 U Ny), as required

‘CASE strexp = longstm'd‘ From assumptions and from rule 8.15, we have

B(longstrid) = & (8.233)
Bt strezp = (0)(&,¢)
Tk B (8.234)

From rule 7.10, we have I' - ¢ : {}. Moreover, from the definition of type
consistency and from (8.233) and (8.234), we have I' . £, as required.

CASE strexp = strexp’ : sigea:p‘ From assumptions and from rule 8.16, we
have

B+ strexp = (N)(&,d) (8.235)
£ & (8.236)
B strexp = (N)(&',d)
T ke B (8.237)

By applying induction to (8.237) and (8.235), we have there exists I'' such
that ' d : " and (' + ') K. £ and Dom I" C N. From Proposition 8.7.5
and from (8.236), we have (I' + I'') k. &', as required.

CASE strexp = funid (strexp’) | From assumptions and from rule 8.17, we
have

B(funid) = (By, strid, strezp,, ®) (8.238)

8.7. TYPE CORRECTNESS 173

B strexp’ = (N)(€,d) (8.239)
E>E (8.240)
(N UN;)Nnames B=10 (8.241)
NN (N Unames(€,d)) =0 (8.242)
By + {strid — '} b strezp, = (N1)(E1, dy) (8.243)
B+ strexp = (N U Np)(&1,d ; dy)

I'He B (8.244)

By appropriate renaming of bound names, we can assume
(NUN;)Nnames I' = () (8.245)

By applying induction to (8.244) and (8.239), we have there exists I such
that

THd: T (8.246)
C+T") ke & (8.247)
Dom I' C N (8.248)

By appropriate renaming of bound names, we can assume
N; N (N Unames I') =) (8.249)

From Proposition 8.7.5, from (8.247) and (8.240), and from the definition of
type consistency, we have

(T'+T") ke {strid — E'} (8.250)

From the definition of type consistency and from (8.244) and (8.238), we
have

T he By (8.251)

From (8.248) and (8.245), we have Dom I" N Dom I' = (}, hence, from Propo-
sition 8.7.4 and from (8.251) and (8.250), we have

(T + ') ke (B + {strid — &'}) (8.252)

174 CHAPTER 8. STATIC INTERPRETATION OF MODULES

By applying induction to (8.243) and (8.252), we have there exists I'; such
that

T+T'Fd : T, (8.253)
T+ +T) ke &

Now, from rule 7.9 and from (8.246) and (8.253), we have I' - d ; dy : I'+T.
Moreover, from (8.248) and from (8.254), we have Dom(I" +T'y) C (NUN,),
as required.

‘CASE topdec = functor fumid (strid : sigexp) = stre:cp‘ From assump-
tions and from rule 8.19, we have

F = {funid — (B, strid, strezp, ®)} (8.255)
B+ topdec = (0)((F,{}),¢)
L'k, B (8.256)

From rule 7.10, we have I' i ¢ : {}. Moreover, from the definition of type
consistency and from (8.256) and (8.255), we have I' k. (F,{}), as required.

CASE topdec = topdec, topdec,| The proof for this case is similar to the

proof for the case for strdec = strdec strdecs.
The proofs for the remaining cases follow either immediately or immedi-
ately by induction. O

8.8 ModML Type Soundness

We now state a general type soundness result for ModML. The meaning of
ModML phrases is given in terms of the interpretation into IntML declara-
tions. Informally, the main proposition states that if a ModML top-level dec-
laration elaborates according to the rules of the static semantics of ModML
then the top-level declaration (with transparent signature constraints substi-
tuted for opaque ones) translates into an IntML declaration that does not go
wrong according to the evaluation rules of IntML. The proposition does not
suggest that there always exist a dynamic environment to which the IntML
declaration evaluates; with appropriate support for recursive functions, a
well-typed IntML declaration may fail to terminate.

8.8. MODML TYPE SOUNDNESS 175

Proposition 8.8.1 (ModML type soundness) If B + topdec = (T)B’
and B> B and + B and T kK. B and © is closed and © =D : T then there
exist (T")B" and (N)(B',d) and I'" and ©" such that

° (T)B' - (T')B"

B+ oe(topdec) = (N)(B',d) and N D T' and + B and B' = B"

(T +T') ke B and Dom I'" C N

e I'Fd:TMand ® =0 of T

if there exists o such that D+ er(d) ~ o then o # wrong and there
exists ©" such that (©'+©") is closed and Dom(© +©")NDom 6" = ()
and (@ +0'+0") =p: 1"

PrROOF From assumptions and from Proposition 5.3.1, we have that there
exists (T")B" such that
B+ oe(topdec) = (T")B" (8.257)

and (T)B' = (T")B", as required. From assumptions, from (8.257), and from
Proposition 8.6.4, we have that there exists (IV)(B', d) such that

B+ oe(topdec) = (N)(B', d) (8.258)

and N DT"and F B and B' = B”, as required. Moreover, from assump-
tions, from Proposition 8.7.7, and from (8.258), we have that there exists I"
such that

I'Hd: T (8.259)

and (I' + ['') k. B’ and Dom ' C N, as required. Let © = © of ['. By
appropriate renaming of bound names, we can assume

Dom © NDom ©' = () (8.260)
Now, assume that there exists a declaration result ¢ such that

Dt er(d)~ o (8.261)

176 CHAPTER 8. STATIC INTERPRETATION OF MODULES

From assumptions, from Proposition 7.4.3, and from (8.259), (8.260), and
(8.261), we have ¢ # wrong and there exists ©” such that (0’ + ©") is closed
and Dom(© + ©') NDom ©” = () and (© + ©' + ©") = p : I, as required.

O

Type soundness for closed ModML top-level declarations follows from the
preceding proposition:

Corollary 8.8.2 (ModML weak type soundness) If {} + topdec =
(T')B then there exist (N)(B,d) such that

o {} F oe(topdec) = (N)(B,d)

e if there exists ¢ such that {} & er(d) ~ o then o # wrong

Similar to the approach we take here, Harper and Stone [HS97| interpret
Standard ML phrases into an intermediate language for which a type sound-
ness result exists. Their interpretation, however, interprets Modules language
constructs of Standard ML into constructs of their intermediate language. In
contrast, the approach that we present here eliminates all Modules language
constructs during interpretation.

8.9 Cut-Off Incremental Recompilation

The framework for separate compilation presented in Chapter 6 does not
immediately work well together with the interpretation of modules that we
have presented in this chapter. The problem is the phase distinction between
the point at which a functor is declared and the points at which the body
of the functor is interpreted. Consider a project consisting of three program
units A, B, and C:

(* Program unit A *) functor A(...) =
(* Program unit B *) functor B(...) =
(* Program unit C *) structure A = A(...)

B(...)

structure B

8.9. CUT-OFF INCREMENTAL RECOMPILATION 177

It is important that a modification of the functor A, say, does not necessarily
trigger recompilation of the functor body for the functor B (or vice versa).
However, with any reasonable definition of strong enrichment for translation
environments and translation bases, a modification of program unit A will
enforce the program unit C to be recompiled. Thus, according to the inter-
pretation of Modules that we have presented in this chapter, both functor
bodies will be recompiled.

The solution is to extend repositories to map functor identifiers to infor-
mation about compiled functor bodies. Then, for the example above, when
the program unit C is recompiled, it becomes possible to recognise (using
strong enrichment) that the code generated for the body of the functor B
may be reused.

178 CHAPTER 8. STATIC INTERPRETATION OF MODULES

Part I1I
The ML Kit with Regions

179

Chapter 9

A Guided Tour

The ML Kit with Regions (or just the Kit) is a compiler for Standard ML.
Traditional implementations of Standard ML (and of most other functional
languages that support dynamic data structures such as lists and trees) are
based on reference tracing garbage collection, where allocation of memory is
separated from deallocation of memory; the Kit is not. Instead, the Kit uses
region inference [TT97, TT94| and region representation analyses [BTV96]
to insert memory management directives in the program at compile time for
allocating and deallocating memory.

The Kit elaborates and compiles full Standard ML—including Modules—
using the techniques that we presented in the preceding parts. The Kit
features, among other things, a profiler for determining space consumptions
of programs, a foreign language interface for interacting with C, and a users
manual that describes how to program with regions in the Kit [TBE*98].

The separate compilation framework that the Kit uses makes it possible
to compile large programs using region inference. AnnoDomini, which is a
tool for solving year 2000 problems in COBOL programs, has been com-
piled with the Kit. AnnoDomini is approximately 33,000 lines of Standard
ML (excluding the Standard ML Basis Library [Ge]) and uses Standard ML
Modules extensively. Moreover, the Kit compiles the Kit itself, which is
approximately 80,000 lines of functorised Standard ML.

In the following section, we give an overview of how to compile programs
with the Kit using a so-called project manager, which is built into the Kit
(consult [TBE*98] for an in depth description.) Then, in the next sections,
we describe the overall structure of the Kit. In Chapter 10, we give an
overview of the back-end phases of the Kit and we show how these phases

181

182 CHAPTER 9. A GUIDED TOUR

import baslib.pm
in set.sml elem_int.sml main.sml
end

Figure 9.1: A sample project file myprj.pm.

provide support for the separate compilation framework presented in Chap-
ter 6. As a running example, we demonstrate how a program is compiled
with the Kit and how the program gradually is transformed into executable
machine code.

9.1 Compiling with the Kit

A program in the Kit is specified by a project file, which lists a sequence
of program units (source files) and potentially imports other project files.
An example project file myprj.pm is listed in Figure 9.1. The meaning of
the project myprj.pm is the meaning of the Standard ML top-level declara-
tion that arises by catenating the program units in project baslib.pm and
the program units set.sml, elem_int.sml, and main.sml. If the project
myprj.pm is imported into other projects, then only the declarations in the
program units set.sml, elem int.sml, and main.sml are made visible to
these other projects. Projects must be acyclic and project file names (e.g.,
myprj.pm) must be unique. A project is evaluated only once, even if it is im-
ported by multiple other projects. Thus, if the project myprj.pm is imported
by multiple projects then only the first import—determined by a left-to-
right depth-first search of the project hierarchy—gives rise to evaluation of
set.sml, elem_int.sml, and main.sml.

The project model that the Kit uses generalises the project model of Sec-
tion 6.5 by allowing a project to import other projects. The project model
provides similar functionality as the group model of the compilation manager
for the Standard ML of New Jersey compiler [Blu97, Blu95]. For example,
the project model allows for solving conflicts when several libraries are com-
bined (each of them being a project) by inserting appropriate stub code for
renaming problematic identifiers around a library without actually modifying
the library. In contrast to the Standard ML of New Jersey compiler, the Kit

9.2. PROJECT MANAGEMENT 183

does not impose restrictions on the form of top-level declarations [Blu97].

The Kit has a simple text based user interface. It provides functionality
for setting compiler flags and for managing projects. The functionality for
managing projects is sparse. One operation allows the user to modify the
name of the top-most project (the root project) and another operation allows
the user to build a project. The Kit compiles the program units of a project
in the order determined by a left-to-right depth-first traversal of the project
hierarchy. Upon modification of a program unit, the Kit uses time stamps
to infer what program units must be recompiled. The separate compilation
scheme has the property that one always gets the same result as if the project
was compiled from scratch.

Continuing the example, we assume that the project baslib.pm provides
appropriate declarations for the identifiers Int.toString, =, and print. The
program unit set.sml is listed in Figure 9.2; it declares a functor Set, which
takes as argument a structure that provides a type t and a function pr for
giving a string representation of values of the type t. The body of the functor
declares the type set and operations over sets and set elements. The program
unit elem_int.sml is listed in Figure 9.3; it declares a structure ElemInt with
a type component t and a value component pr. The program unit main.sml
is listed in Figure 9.4; it applies the functor Set to the structure ElemInt.
Moreover, the program unit constructs a set {56} and prints it.

9.2 Project Management

An overview of the structure of the Kit is given in Figure 9.5. The Kit has a
project manager that parses and analyses project hierarchies and makes re-
quests for parsing, elaborating, and interpreting program units in the project
hierarchy. When all imported projects and all program units of the project
hierarchy have been processed, standard linking technology is used to link to-
gether the results of interpreting the program units in the project hierarchy.
The result of the linking process is an executable file run.

The project manager enforces certain well-formedness requirements on
project hierarchies. First, a program unit must be mentioned only once
in each project file (different project files may use the same program unit
name for different program units.) Second, the project hierarchy must be
acyclic. Finally, different projects in the project hierarchy may be located
in different directories on the underlying file system and the project model

184 CHAPTER 9. A GUIDED TOUR

functor Set (Elem : sig eqtype t
val pr : t -> string
end) =
struct

type set = Elem.t list
val empty : set = []
fun member (s:set, e) =

let fun mem [] = false

| mem (a::s) = (a = e) orelse mem s
in mem s
end
fun insert (s, e) = if member(s, e) then s
else e::s
fun pr s =

let fun pr’ [] = ""
| pr’ [e] = Elem.pr e
| pr’ (e::s) = Elem.pr e ~ "," ~ pr’ s
in ||{|| -~ pI" g - “}”
end
end

Figure 9.2: The program unit set.sml.

allows file names in projects to be given both as absolute and relative paths.
Thus, to enforce that project names are unique, the project manager checks
that if two projects import a project with the same name then the names
refer to the same file on the underlying file system.

With reasonable assumptions about the project baslib.pm, the project
myprj.pm is well-formed. To compile the project myprj.pm, after processing
the project baslib.pm, the Kit processes each of the program units set.sml,
elim_int.sml, and main.sml, in order.

9.3. PARSING, ELABORATION, AND OPACITY ELIMINATION 185

int
Int.toString

structure ElemInt = struct type t
val pr

end

Figure 9.3: The program unit elem_int.sml.

structure IntSet = Set (open ElemInt)
open IntSet

val a = insert(empty, 5)

val _ = print("The set a is " ~ pr a)

Figure 9.4: The program unit main.sml.

9.3 Parsing, Elaboration, and Opacity Elim-
ination

The parser and lexer used in the Kit are constructed using ML-Lex [AMT94|
and ML-Yacc [AT94]. A detailed description of parsing and lexing of Stan-
dard ML in the Kit is given in [BRTT93, Chapter 3].

Elaboration in the Kit is based on an implementation of algorithm W of
Milner’s polymorphic type discipline [Mil78, DM82] that supports efficient
unification, efficient generalisation, and efficient instantiation. In the imple-
mentation, unification is based on a union find data structure and all type
variables have an associated level, when a type variable « is unified with a
type 7 then the level of each of the type variables in o and 7 are lowered to
have the lowest level of the type variables in a and 7. Elaboration is imple-
mented by a set of mutual recursive functions for traversing Standard ML
phrases. During elaboration, a current level is maintained. When elaborating
an expression of the form

fn wvid => exp

then vid is bound to a fresh type variable with its level equal to current level.
When elaborating a declaration of the form

val vid = exp

186 CHAPTER 9. A GUIDED TOUR

project
Project
TOJECt L L run (executable file)
manager
Parser
Elaborator

Prog. unit Opacity
repository eliminator
Func'tor Interpreter— .o files
repository

Backend

Figure 9.5: The overall structure of the Kit.

the current level is increased by one before the expression ezxp is elaborated
and decreased again when returning from elaborating exp. Now, all the type
variables that occur free in the type 7 inferred for exp and that have level
greater than the current level may be quantified (for full Standard ML, exp is
also required to be what is called non-expansive [MTHM97]) by setting their
level to ~1, say; all type variables in the environment will have level equal
to or lower than the current level. Type instantiation is done by taking a
copy of the type where all quantified type variables—those with level “1—are
made fresh with level equal to current level.

Many of the rules of elaboration require that some set of type names is
chosen such that all of the names are fresh with respect to the environment (or

9.3. PARSING, ELABORATION, AND OPACITY ELIMINATION 187

basis) in which the phrase is elaborated (see e.g., rule 2.30 on page 26). Dur-
ing elaboration, unification may invalidate already checked side conditions by
unifying free type variables in the environment with types containing fresh
type names. The Kit solves this problem by associating type variables and
type names with a rank. During elaboration, a current rank is maintained;
whenever a fresh type variable or a fresh type name is chosen, it gets the
current rank and the current rank is increased by one. Now, when a type
variable « is unified with a type 7, it is checked that the rank of each of the
type names in 7 is indeed lower than the rank of «. Moreover, the rank of
each of the type variables in v and 7 are lowered to have the lowest rank of
the type variables in a and 7.

Other aspects of elaboration include how to represent realisations and
how to implement signature matching. In the Kit, realisations are repre-
sented by a finite map from type names to type functions and application of
a realisation to an object is implemented by applying the realisation recur-
sively to any sub-objects of the object, while carrying out beta-conversions on
types (see Section 2.3 on page 11). With this implementation of realisations
and from the property that signature expressions elaborate to type-explicit
signatures (see Section 3.2 on page 44), it is straightforward to implement
signature matching; given a signature (7')E and an environment, E’; the task
is to find another environment £~ such that

(TE>E~ < E'

The implementation first computes a realisation ¢ such that ¢(E) = E~ and
Supp ¢ C T. Then, the implementation checks that E' indeed enriches E~.
The realisation ¢ is computed to be the composition of the realisations {¢ —
6}, where E(longtycon) = (t, VE) and t € T and E'(longtycon) = (6, VE'),
for some longtycon, VE, and VE'.

Both during parsing and during elaboration, errors may occur, which
must be reported to the programmer. Such errors are annotated on the syn-
tax tree during parsing and elaboration and then reported to the programmer
when control returns to the project manager.

During elaboration, type information is annotated on the abstract syntax
tree. This type information is manipulated by opacity elimination (see Chap-
ter 5) and used during interpretation (see Chapter 8). Thus, the Kit does not
perform type inference during interpretation, but relies on type information
that stems from elaborating program phrases.

188 CHAPTER 9. A GUIDED TOUR

9.4 Interpretation

In Chapter 8, we investigated how ModML programs can be interpreted at
compile time and translated into IntML declarations. The technique used
in the Kit differs slightly from the technique that we developed in Chap-
ter 8; the Kit does not always link declarations of the intermediate language
during interpretation. Instead, whenever a Core Standard ML declaration
is translated into an intermediate language declaration, the Kit requests the
back-end to compile these intermediate declarations into machine code ob-
ject files that may later be linked using standard linking technology. For
optimisation, Standard ML Modules phrases that do not contain any func-
tor applications are compiled together to make each compilable chunk as
large as possible without destroying the properties of separate compilation.
To request the back-end to compile intermediate declarations into machine
code object files during interpretation, the interpretation maintains compiler
bases, which hold environments for each phase in the back-end, as well as
translation bases.

Each of the program units set.sml, elem_int.sml, and main.sml, of the
myprj.pm project, is first processed by the parser, the elaborator, and the
opacity eliminator. As mentioned earlier, the Kit aborts the processing of
the project and reports to the user if errors occur during parsing or during
elaboration. After opacity elimination, the resulting representation of the
program unit is processed by the interpreter. Interpretation of the set.sml
program unit causes no code to be generated. Instead, a functor closure
is associated with the functor identifier Set, so that, when the functor is
applied, the body of the functor can be specialised for the particular applica-
tion. Interpretation of the elem int.sml program unit, on the other hand,
requests the back-end for generating object code for the value component
pr of the structure ElemInt. The optimiser in the Kit does not currently
propagate simple variable bindings across program unit boundaries; if it did,
no code needed be generated for the structure ElemInt, as all information
about it (e.g., that the value identifier pr is bound to Int.toString), would
be present in the resulting translation and compiler bases. Interpretation
of the program unit main.sml requests the back-end to generate code for
an instance of the body of the functor Set and for the construction and
printing of the set {5}. Thus, besides from object code associated with the
project baslib.pm, the project myprj.pm compiles into three separate pieces
of object code, which the Kit links to form an executable run.

9.5. THE REPOSITORY 189

structure ElemInt = struct type t = int
fun pr a = Int.toString a
end

Figure 9.6: The program unit elem_int.sml after modification.

When compiling projects with heavily functorised code, it is important
that functor closures in translation bases do not take up too much space.
Recall that a functor closure is a record holding among its components an
elaborated structure-level expression; the Kit holds on to just enough infor-
mation that the structure-level expression can be reparsed and reelaborated
at the points the functor is applied. The Kit does not store the abstract
syntax tree itself.

9.5 The Repository

The Kit uses a repository for storing information about compiled program
units and compiled functor bodies.

Before the manager requests the parser and elaborator to process a pro-
gram unit, the manager looks up the program unit in the repository to see
if information stored in the repository may be used instead of processing the
program unit. Several conditions must be satisfied for the information in
the repository to be used. First, the modification time for the program unit
must not be newer than when the program unit was last processed.! Second,
the assumptions under which the program unit was last parsed, elaborated,
interpreted, and compiled—by the back-end—must not have changed; this
last check is performed by checking for strong enrichment (for elaboration,
also agreement (see Section 4.4) must be checked.) Now, consider modify-
ing the program unit elem_int.sml by eta-converting the declaration of pr
(see Figure 9.6). Then, the program unit elem_int.sml need be recompiled.
Moreover, elaboration and compilation of the program unit main.sml depend
on assumptions about the value component pr of the structure ElemInt. Al-

LAn alternative is to use cryptographic checksums of program units, which can be
more reliable in circumstances where times are not reliable (e.g., a distributed setting, or
compilation times below one second.)

190 CHAPTER 9. A GUIDED TOUR

though assumptions for elaboration (i.e., the type of pr) have not changed,
the calling convention in the Kit for pr has; the value component pr is now
what is called region polymorphic and takes a region as argument at runtime
(see Section 10.4).% It follows that the program unit main.sml and the body
of the functor Set need be recompiled so as to generate correct code for the
call to the pr value component of the structure ElemInt.

Similar to as when the manager makes requests to the repository, when
the interpreter encounters a functor application, the interpreter requests the
repository to see if information stored in the repository may be used instead
of processing the functor body. Again, several conditions must be satisfied
for the information in the repository to be used. First, the functor body
found in the functor closure in the translation environment must not have
changed. Second, the assumptions under which the functor body was last
interpreted and compiled must not have changed; again, this last check is
performed by checking for strong enrichment. Now, consider modifying the
program unit main.sml to construct a larger set {5,7} by modifying the
declaration of a to

val a = insert(insert(empty,7),5)

Upon this modification, the program unit main.sml needs be reelaborated
and recompiled. However, neither the program unit elem int.sml nor the
body of the functor Set need be reelaborated or recompiled.

In the presentation of interpretation in Chapter 8, generativity of names
was ensured by alpha-conversion of bound names. In an implementation
that builds on standard linking technology, bound names of objects contain-
ing compiled machine code cannot be allowed to alpha-vary, because some of
these bound names are labels in the compiled machine code, which are not
easy to alter. Indeed, the Kit does not allow bound names of objects con-
taining compiled machine code to alpha-vary, except at the point just before
the assembly code is emitted to a file and assembled. At this point, the Kit
allows bound names of the object to be renamed to potentially match envi-
ronment entries of previously compiling the program unit or functor body.
Thus matching is the key operation for implementing cut-off incremental re-
compilation in the Kit. Matching is defined for all phases of the Kit, for which
names may be generated. These phases include elaboration, interpretation,
and several phases of the back-end.

2We assume here that the value component toString of the structure Int is already
region polymorphic.

9.6. THE BACK-END 191

9.6 The Back-End

In the Kit, the interpreter is parameterised over a simple interface to the
back-end. The interface provides an abstract notion of compiler basis with
operations for modification, enrichment, restriction, and matching. More-
over, it provides a function for compiling a language corresponding to IntML
in some compiler basis into a compiler basis that holds information about
new declarations and into so-called target code, which essentially is a rep-
resentation of assembler code that can be emitted and assembled into a .o
file using UNIX as. The interface also provides an operation for emitting
target code into a .o file and for creating a .o file for executing initialisa-
tion code for all program units in a project hierarchy. As discussed earlier,
standard linking technology (i.e., UNIX 1d) is used to link .o files to create
executables.

In the following chapter, we give an overview of the different phases of the
back-end. Moreover, we describe how these phases are composed to make up
the back-end.

192 CHAPTER 9. A GUIDED TOUR

Chapter 10

Back-End Phases

In this chapter, we give an overview of the back-end phases of the Kit and
describe how each of the phases fit into the framework for separate compila-
tion that we presented in Chapter 6 and Chapter 8. As a running example,
we show how the member function and the insert function of the previous
chapter are compiled into RISC like machine code.

The back-end of the Kit comprises a series of transformations on four
intermediate languages of which the first three are typed:

Lambda A lambda-calculus like intermediate language corresponding to the
language IntML of Chapter 7. The main difference between the Stan-
dard ML Core language and Lambda is that Lambda is typed and that
it has only primitive patterns.

RegionExp The analysis that decides when regions should be allocated and
deallocated is called region inference. Region inference inserts several
forms of memory management directives into the program. RegionExp
is the target language of region inference.

MulExp This language is similar to RegionExp except that the terms of
MulExp are polymorphic in the type of information that annotate the
nodes of the terms. Thus, the Standard ML type discipline allows for
MulExp to be used as a common intermediate language for a series of
the intermediate analyses of the back-end, which add more and more
information on the syntax tree.

Kit Abstract Machine (KAM, for short) The KAM is a RISC like language

193

194 CHAPTER 10. BACK-END PHASES

that details the memory management directives of RegionExp and
MulExp.

In the following sections, we describe the phases of the back-end in de-
tail. Each of the phases provides an interface with operations on abstract
translation environments for modification, strong enrichment, restriction,
and matching (see Chapter 6 for an explanation of these terms.) More-
over, each interface provides a function for translating a source program of
the translation, in some translation environment, into a target program for
the translation, together with an environment that holds information about
declared names of the source program. Each of the translation phases of
the back-end enjoys the properties of Chapter 6 that must hold so as to
demonstrate correctness of the separate compilation framework.

The compiler basis provided by the back-end is the product of the trans-
lation environments for each of the phases of the back-end and the operations
for modification, enrichment, restriction, and matching are composed, in the
natural way, from the operations for each of the translation phases of the
back-end.

10.1 Elimination of Polymorphic Equality

The first phase of the back-end is elimination of polymorphic equality. Stan-
dard ML has a generic primitive for testing two values of the same type for
equality. Thus, the Standard ML programmer may write

fun eq_pair a = (3, "hello") = a

to create a function that takes a pair of an integer and a string as argument
and tests if it is equal to the pair (3, "hello"); that is, the function returns
the value true if the first component of the argument is equal to 3 and if
the second component of the argument is equal to "hello"; otherwise, the
function returns false. To have a primitive in the runtime system to perform
this equality test, the equality primitive must be able to distinguish pairs
from integers and integers from strings, and so on, so as to choose the correct
means of equality; thus, traditional implementations of Standard ML use
runtime tags to implement the equality primitive. In many implementations,
runtime tags are already there to support reference tracing garbage collection.
Because the Kit does not use reference tracing garbage collection, the runtime

10.1. ELIMINATION OF POLYMORPHIC EQUALITY 195

tags would only be used to support an equality primitive in the runtime
system.

For the preceding example, the compiler could, in principle, create code
for the equality test from the knowledge of the type of the argument to
the equality primitive. But such code is not always straightforward to con-
struct. To avoid the possibility of testing functional values for equality, the
type system of Standard ML [MTHMO97] distinguishes between ordinary type
variables, which may be instantiated to any type, and equality type variables,
which may be instantiated only to types that admit equality (i.e., types not
containing ordinary type variables or function types.) Now, the Standard
ML programmer may declare a polymorphic function pmem using the equal-
ity primitive to test if a given value is among the elements of a list:

fun pmem y [] = false
| pmem y (x::xs) = (y=x) orelse pmem y xs

The function pmem gets type scheme
Ve . e — ¢ list — bool

where ¢ is an equality type variable (i.e., a type variable that ranges over
equality types.) For this example, it is not immediately possible to generate
code for testing y and x for equality because their types are not known. The
Kit implements a translation, called equality elimination, for eliminating
polymorphic equality by abstracting functions over equality functions for
each bound equality type variable in the type scheme for the function. Thus,
the function pmem translates into the function

fun pmem eq y [] = false
| pmem eq y (x::xs) = eq(y,x) orelse pmem eq y Xs

and whenever the function pmem is applied, an equality function for the in-
stance of the equality type variable is passed to pmem. In this way, the source
language for equality elimination is the language Lambda with a polymorphic
equality primitive and the target language is the language Lambda without a
polymorphic equality primitive. For an in-depth treatment of the translation,
consult [Els98].

For each declared datatype that admits equality (i.e., that contains only
types that admit equality), the Kit generates a function for testing values of
this datatype for equality. Such functions are bound to Lambda variables

196 CHAPTER 10. BACK-END PHASES

that are chosen fresh during translation and the translation maintains a trans-
lation environment that maps type names to the generated Lambda variables
for equality functions for datatypes. The interface for the translation pro-
vides operations on translation environments for modification, enrichment,
restriction, and matching.

10.2 Intermediate Language Optimisation

The Kit has an optimiser that transforms a Lambda program into another
Lambda program by applying a series of optimisations inspired by [App92,
SW95] but extended to apply to the typed setting of the Lambda language
(see [TMC*96, Tar96]) and implemented using the techniques described in
[AJ97]. The optimisations include specialisation of recursive functions, func-
tion in-lining, constant propagation, dead code elimination, minimisation of
mutually recursive functions, and record elimination. All of the optimisa-
tions are local to each Lambda program, thus, no translation environment
is used for propagating information across program unit boundaries; the Kit
has yet to employ the possibilities of the separate compilation scheme with
respect to intermodule optimisation. Most promising is the possibility of con-
stant propagation and specialisation and in-lining of small functions across
program unit boundaries.

After equality elimination and optimisation, the Lambda program result-
ing from interpreting the application of the Set functor has transformed into
a new Lambda program. The member function declared by this Lambda
program is shown in Figure 10.1. Selections from tuples (e.g., #1 v1247 in
line (*1%) of Figure 10.1) and deconstruction of constructed values (e.g.,
decon_:: var23 in line (¥2*) of Figure 10.1) are made explicit. Moreover,
equality elimination has transformed the use of the polymorphic equality
primitive into a use of the integer equality primitive (line (*3%) of Fig-
ure 10.1). The insert function of the Lambda program is shown in Fig-
ure 10.2.

10.3 Intermediate Language Type Checking

After a Lambda program is optimised it is type checked. In normal circum-
stances, type checking should always succeed; the phase is there to catch

10.4. REGION INFERENCE 197

fun member v1247 =
(x1%x) let val e = #1 v1247
val s = #0 v1247
fun mem var23 =
case var23
of nil => false

(*%2%) | :: => let val s = #1 (decon_:: var23)
val a = #0 (decon_:: var23)
(*3x%) in case a =_int e

of true => true
| false => mem s
end
in mem s
end

Figure 10.1: The member function of the Lambda program resulting from
interpreting the application of the Set functor (after equality elimination
and optimisation). Type information has been deleted, for brevity.

errors in the generated code and it is a great help during development of the
front-end and the optimisation phases. Type checking is the identity transla-
tion on Lambda programs, but it maintains a type environment for propagat-
ing information about declared lambda variables and declared type names
to other program units that use them. The interface for the type checker
provides operations for modification, enrichment, and restriction. Because
no new names are generated during type checking, no matching operation is
necessary for this phase in the back-end.

10.4 Region Inference

The remaining phases of the Kit are based on region inference. The basic
runtime model for region based memory management is a stack of regions (see
Figure 10.3); new regions may be allocated on top of the stack and memory
may be freed either by deallocating the top most region or by resetting any
region on the stack, without actually deallocating the region. Each region

198 CHAPTER 10. BACK-END PHASES

fun insert v1266 =
let val e = #1 v1266
val s = #0 v1266
in case member (s,e)
of true => s
| false => let val v1271 = (e,s)
in :: v1271
end
end

Figure 10.2: The insert function of the Lambda program resulting from
interpreting the application of the Set functor (after equality elimination
and optimisation). Type information has been deleted, for brevity.

is represented as a linked list of constant sized region pages,' thus, a region
may grow dynamically by new region pages being added to the region; so
one may think of the region stack as a stack of heaps. Whenever a region is
deallocated or a region is reset, the linked list of region pages in the region
is appended to a free list maintained by the runtime system.

All values, such as records, recursive data structures, and closures, that
do not fit into one machine word, are represented boxed and put in regions.
Region inference in the Kit translates Lambda programs into RegionExp
programs, for which all value creating program points in the program are
annotated with region variables, which we range over by p. Thus, the Lambda
pair (3, "hello") translates into the RegionExp pair

(3, "hello" at p) at p'

for some region variables p and p’. Moreover, when p is any region variable
and e is some RegionExp expression then so is

letregion p in e end

Dynamically, a region is allocated on the stack of regions and bound to p.
Then, the expression e is evaluated, perhaps using the region bound to p for

LCurrently, the size of a region page in the Kit is 800 bytes.

10.4. REGION INFERENCE 199

Iy I i)

Figure 10.3: A stack of Regions. The region stack grows horizontally, thus,
ro is the top region. Each region is represented as a linked list of region

pages.

storing values, and finally, upon reaching end, the region is deallocated from
the stack.

A function in RegionExp can be declared to take regions as arguments and
may thus, depending on the actual regions that are passed to the function,
produce values in different regions for each call. Such functions are said to
be region polymorphic and take the form

fun vid at p [p] arg = e

where e is a RegionExp expression, where id and arg are lambda variables,
where p is a region variable representing a region for storing the closure for the
function (i.e., values for the free lambda variables for the function and regions
for the free region variables for the function), and where j is a sequence of
formal region variables for the function. When a function declaration has no
free variables, no closure is needed for the function; we shall drop the at p
in this case.

Region inference is a type-based analysis; if some lambda variable is
bound to the RegionExp pair given in the preceding paragraph, then this

200 CHAPTER 10. BACK-END PHASES

lambda variable gets the so-called region type

(tint X (tstringa p)a pl)

where i and tgring are type names with arity 0. Moreover, a region polymor-
phic function is associated to a so-called region type scheme, which expresses
the region polymorphism of the function. Because region inference depends
on region types and region type schemes for those lambda variables that oc-
cur free in RegionExp expressions, region inference is implemented by use
of a translation environment mapping lambda variables to region types and
region type schemes.

To allow for declared lambda variables in a RegionExp program unit to
be accessed by other program units, the region inference interface in the
Kit provides operations on translation environments for modification, en-
richment, and restriction. No new free region variables occur in RegionExp
programs, because such region variables are unified with already existing
so-called global region variables (i.e., region variables that are global to the
computation of the entire program.) Because no new free variables occur in
RegionExp programs or in region types and region type schemes that propa-
gate across RegionExp program boundaries, no matching operation is needed
for this translation step.

Tofte and Talpin [TT94, TT97| give a type system for a language corre-
sponding to RegionExp and show that the type system is sound with respect
to an abstract memory model for the language; that is, they show that it is
safe to deallocate a region allocated by a letregion construct upon leaving
its scope. Tofte and Birkedal [TB96, TB98] present the region inference algo-
rithm that is used in the Kit and demonstrate that the algorithm terminates
and that the resulting program is typable in the Tofte-Talpin type system.

10.5 Region Representation Analyses

The Kit uses a series of transformations on MulExp programs to map the
abstract memory model of the RegionExp language into conventional mem-
ory [BTV96]. For each translation phase, information is propagated across
MulExp program units through translation environments, as described for
region inference in the previous section.

The first transformation on MulExp programs is multiplicity inference
[Vej94, BTV96]. Multiplicity inference approximates the number of values

10.6. CODE GENERATION 201

that are put into each region at runtime. Each letregion construct is trans-
formed into a construct of the form

letregion p: m in e end

where p is a region variable, where e is a MulExp expression, and where m is
a multiplicity, which takes the form 0, 1, or oco. The Kit implements regions
with finite multiplicity (i.e., with multiplicity 0 or 1) directly on the runtime
stack. Another analysis called physical size inference infers the maximum
physical sizes (i.e., the number of words in memory) of regions with finite
multiplicity [BTV96, Section 7]; thus, eventually, each letregion construct
is transformed into the form

letregion p: psz in e end

where psz is a physical size, which take the form oo or n, where n > 0 is a size
(in words). Similarly, each function declaration is modified so as to express
the minimal physical size of regions that may be passed to the function.

Figure 10.4 shows the member function of the MulExp program resulting
from translating the Lambda member function of Figure 10.1. List construc-
tors are implemented unboxed; the least significant bit of a list value is used
to distinguish the nil constructor from the :: constructor, which is repre-
sented as a pointer to an allocated pair (two words) that holds the head of
the list and the tail of the list. The MulExp member function takes no region
arguments (expressed by the empty region argument list []1) and neither does
the local function mem. However, a closure containing the local variable e is
created when mem is declared; the closure is put into region r10, which is
inferred to require only one word of memory.

Figure 10.5 shows the insert function of the MulExp program resulting
from translating the Lambda insert-function of Figure 10.2. The MulExp
insert-function takes as argument a region in which to store—potentially—
a pair holding a new set element and the list representation of the existing set
of elements. A local region (i.e., region r24) is used for holding the argument
pair for the call to the member function.

10.6 Code Generation

The Kit translates MulExp programs into KAM programs, which in turn
are compiled into HP PA-RISC machine code or ANSI C [EH95]. The only

202 CHAPTER 10. BACK-END PHASES

fun member [] v1247 =
let val e = #1 v1247
val s = #0 v1247
in letregion ri10:1
in let fun mem at ri10 [] var23
case var23
of nil => false
| :: => let val s
val a

#1 (decon_:: var23)
#0 (decon_:: var23)
in case a =_int e

of true => true
| false => mem[] s
end
in mem[] s
end
end
end

Figure 10.4: The member function of the MulExp program resulting from
translating the Lambda member function of Figure 10.1.

transformations performed on KAM programs are dead code elimination,
copy propagation, and register allocation based on graph-coloring.

After register allocation, the KAM has a finite set of general purpose
caller-save registers, which we shall write grl through gr4. The KAM has
a runtime stack, pointed to by the sp special purpose register. The runtime
stack is used for preserving live variables accross function calls (using the
KAM instructions push and pop), but also for storing finite regions and
for storing descriptions of non-finite regions (i.e., pointers to lists of region
pages.) The KAM instruction mov s,d moves the source s (a register or an
immediate) into the destination register d. The 1d r(¢), d instruction loads
the content of the memory location pointed to by r offset by ¢ words into the
destination register d. Contrary, the st s,7 (i) instruction stores the content
of the source register s in the memory location pointed to by r offset by
i words. The offs r(i),d instruction computes the address pointed to by r
offset by ¢ words and stores it in the destination register d.

10.6. CODE GENERATION 203

fun insert [r20:2] v1266 =
let val e = #1 v1266
val s = #0 v1266
in case letregion r24:2
in member[] (s, e) at r24
end
of true => s
| false => let val v1271 = (e, s) at r20
in :: v1271
end
end

Figure 10.5: The insert function of the MulExp program resulting from
translating the Lambda insert-function of Figure 10.2.

Figure 10.6 shows KAM code for the member function resulting from trans-
lating the MulExp member function of Figure 10.4.2 The KAM code with the
label 1_mem corresponds to the local function mem of the member function. The
KAM code for the mem function expects its argument in the special purpose
register arg and its closure, holding the value for the free lambda variable
e, in the special purpose register clo. The result of calling the mem function
is passed in the special purpose register res; the KAM instruction ret pops
the return address off the stack and does a branch. The KAM instructions
ubtagcon, ubdecon, and ubcon allow for representing nil and :: unboxed,
using the least significant bit of a list value to represent the value constructor
(the bit is 1 for nil and 0 for ::). Consult [Els98] for a general discussion
of the representation of datatypes in the Kit.

Figure 10.7 shows KAM code for the insert function resulting from trans-
lating the MulExp insert-function of Figure 10.5. Besides from the special
purpose register arg the insert function expects, in the special purpose reg-
ister argl, a tuple containing the actual region for potentially storing a pair

2The output from the Kit is slightly beautified, for brevity; instructions, labels, and
registers are renamed, conditionals are expanded (by introduction of a label and an ap-
propriate branch instruction), the syntax for offsetting registers is modified, and the ret
instruction is introduced as an abbreviation for a pop instruction and a br instruction.
Moreover, to make allocation in regions efficient, the Kit in-lines calls to allocInf.

204

CHAPTER 10. BACK-END PHASES

1 _mem:
ubtagcon
bnz
1d
1d
1d
beq
mov
br

1 mem_nil:
mov
ret

1_mem_eq:
mov
ret

1_member:

1d
1d
mov
offs
st
st
push
mov
mov
br

arg,gril
grl,l_mem_nil
arg(1),gr2
arg(0),gr3
clo(0),grl

h

h
h
h

gr3,grl,l_mem_eq %

gr2,arg
1_mem

O0,res

1,res

arg(1),gr3
arg(0) ,gr2
sp,gril
sp(2),sp
gr3,gri(0)
gri,gri(1)
1_member_cont
gril,clo
gr2,arg
1_mem

1_member_cont:

offs
ret

sp(72),sp

h
h

h

h

h
h
h
h
h
h

h

get constructor tag
branch on non-zero (nil)
load s

load a

load e from closure
branch if a = e

install argument
recursive call to mem

return false

return true

load argument

allocate memory for pair
create pair

push return address
install closure

install argument

call mem

deallocate pair

Figure 10.6: KAM code for the member function resulting from translating
the MulExp member function of Figure 10.4.

10.6. CODE GENERATION 205

1_insert:
1d arg(1l) ,gré % load argument
1d arg(0),gr2
mov sp,gr3 % allocate memory for pair
offs sp(2),sp
st gr2,gr3(0) % create pair
st gr4,gr3(1)
push argl % push live registers
push gr4
push gr2
push 1_insert_cont % push return address
mov gr3,arg / install argument
br 1_member % call member
1_insert_cont:
pop gr3 % pop live registers
pop gr2
pop argl
offs sp(72),sp % deallocate pair
bnz res,l_nonzero % branch on non-zero (true)
1d argl(0),grl % load actual region
ccall allocInf[grl,2,res] % maybe allocate memory
st gr2,res(0) % create pair (:: value)
st gr3,res(1)
ret
1_nonzero:
mov gr3,res % return s
ret

Figure 10.7: KAM code for the insert function resulting from translating
the MulExp insert-function of Figure 10.5.

206 CHAPTER 10. BACK-END PHASES

holding the element e and the existing element set. Both finite regions (point-
ers to already allocated memory on the runtime stack) and non-finite regions
(pointers to region descriptors on the runtime stack) may be passed to the
function. Non-finite regions are distinguished from finite regions by having
their least significant bit set. The runtime system provides functionality (i.e.,
the C call to allocInf) for allocating memory in the region, provided the
least significant bit of the region is set.

Chapter 11

Conclusion

We first give an overview of what have been done. We then turn to imple-
mentation issues; in particular, we discuss how the techniques in part one and
part two have been applied to the ML Kit with Regions compiler [TBE'98|.
Finally, we discuss future work.

11.1 Contributions

In the first part of the thesis, we presented a language called ModML. This
language is a subset of the language Standard ML [MTHMO97|, but, its static
semantics differs from that of Standard ML in that generativity of types are
modelled by type abstraction rather than by a stamp-based mechanism. This
difference makes it easier to demonstrate properties of ModML; in fact, some
of the modifications were needed so as to demonstrate some of the more vital
properties of ModML.

One of the important properties that we demonstrated for ModML is
that elaboration of a program phrase in some basis depends only on those
identifiers in the basis that occur free in the phrase (in a sense that we
made precise in Chapter 4.) Although this property seems trivial, problems
are caused by open declarations and value constructors in patterns. This
is one example where working out the proofs forces you to think carefully
about every piece of the system; in fact, it was while doing the proof of the
elaboration dependence property that we realised the problem with value
constructors in patterns.

In the second part of the thesis, we developed a separate compilation

207

208 CHAPTER 11. CONCLUSION

framework called cut-off incremental recompilation that allows for informa-
tion about declared identifiers of a program unit to propagate to other pro-
gram units that depend on the program unit. Based on properties about
individual translation steps of a compiler, we have shown that the framework
is sound (i.e., the result of using the framework is identical to compiling the
program from scratch) and complete (i.e., the result of compiling a program
from scratch is the same as if the framework was used).

The inspiration for the separate compilation framework stems from the
need for more information (e.g., region type schemes) to propagate to other
program units, than can usually be obtained from a program unit interface;
the separate compilation framework does not support cut-off (or true) sepa-
rate compilation. Therefore, it is not possible to compile parametric modules
(i.e., functors) separately, before the argument modules to the parametric
module have been compiled. We present an interpretation of ModML (af-
ter opaque signature constraints have been eliminated) into an intermediate
language called IntML. Tt is explained how the interpretation of ModML
is combined with the separate compilation framework; not only results of
compiling program units are stored in a repository for reuse, also results of
compiling bodies of parametric modules are stored.

IntML enjoys a type soundness property (see Chapter 7); it is demon-
strated that this property leads to type soundness for ModML (see Chap-
ter 8), thus, the type generativity mechanism of ModML is sufficient to ensure
that value constructors do not clash at run time.

11.2 Implementation

A continual inspiration for the work presented in this thesis has been the ML
Kit with Regions compiler. At the time I joined the group at DIKU four years
ago, only very small (and very few) programs passed through the compiler
and even fewer programs did run successfully. We now have a system that
compiles all of Standard ML, provides large parts of the Standard ML Basis
Library [Ge], and has a framework for managing separate compilation. The
separate compilation framework makes it possible to compile large programs
using region inference; the 33,000 lines Standard ML program AnnoDomini,
which is a tool for solving year 2000 problems in COBOL programs, has been
compiled with the Kit. The Kit has even compiled itself—about 80,000 lines
of functorised Standard ML. Much effort has been spent tuning algorithms

11.3. FUTURE WORK 209

and data representations in the Kit to make compile times comparable to
other implementations. Even more effort has been spent tracing bugs and
achieving a stable system; it is by no means an easy task to get a complex
software project like the Kit to function properly.

In large parts, the separate compilation framework and the interpreta-
tion of Modules are independent of the back-end phases in the Kit. The ML
Kit with Regions version 2 [TBE"97] implements the separate compilation
framework of Chapter 6 without supporting the Modules language of Stan-
dard ML. When we implemented the interpretation of Modules, no changes
to the back-end phases were necessary. In this respect, the Kit is still a kit
[BRTT93]; because of the heavy use of the Standard ML Modules system,
it is fairly easy to either insert new back-end phases in the Kit or to substi-
tute old back-end phases. All that is required is that new phases provide a
suitable set of operations as discussed in Chapter 6 and in Chapter 10.

11.3 Future Work

There are several possibilities for future work. First, it would be interesting
to investigate the possibilities for extending the type system of ModML to
support higher-order Modules [MT94, Ler95]. It would also be interesting to
investigate if the interpretation of Modules carry over to higher-order module
languages; in particular, it is not clear whether a combination of a separate
compilation system with an interpretation of a higher-order module language
is feasible.

Another area for future work is the exploitation of the support for inter-
module optimisation that the framework for separate compilation provides;
intermodule optimisation can have major impact on performance [Blu97,
Sha97].

210 CHAPTER 11. CONCLUSION

Bibliography

[AJO7]

[AMTO4]

[App92]

[App93]

[AT94]

[ATW94]

[Blu95]

[Blu97]

Andrew Appel and Trevor Jim. Shrinking lambda expressions
in linear time. In Journal of Functional Programming, 1997.

Andrew Appel, James Mattson, and David Tarditi. A lexical an-
alyzer generator for Standard ML version 1.6.0. Documentation
available from the net, October 1994.

Andrew Appel. Compiling With Continuations. Cambridge Uni-
versity Press, 1992.

Andrew Appel. A critique of Standard ML. In Journal of Func-
tional Programming, pages 3(4):391-429, October 1993.

Andrew Appel and David Tarditi. ML-Yacc user’s manual ver-
sion 2.3. Documentation available from the net, October 1994.

Rolf Adams, Walter Tichy, and Annette Weinert. The cost
of selective recompilation and environment processing. ACM
Transactions on Software Engineering and Methodology, 3(1):3—
28, January 1994.

Matthias Blume. CM, a compilation manager for SML/NJ.
Technical report, Princeton University, Department of Computer
Science, April 1995. User Manual.

Matthias Blume. Hierarchical Modularity and Intermodule Op-
timization. PhD thesis, Princeton University, Department of
Computer Science, November 1997.

211

212

[BRTTO3]

[BTV96]

[Car97]

[DM82]

[EHO5]

[E1s98]

[Ge]

[HLO4]

[HS97]

[Jon95]

BIBLIOGRAPHY

Lars Birkedal, Nick Rothwell, Mads Tofte, and David Turner.
The ML Kit version 1. Technical report, Department of Com-
puter Science, University of Copenhagen, March 1993. An im-
plementation of Standard ML written in Standard ML.

Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region
inference to von Neumann machines via region representation in-
ference. In 23rd ACM Symposium on Principles of Programming
Languages, January 1996.

Luca Cardelli. Program fragments, linking, and modularization.
In 2/th ACM Symposium on Principles of Programming Lan-
gquages, January 1997.

Luis Damas and Robin Milner. Principal type schemes for func-
tional programs. In 9th ACM Symposium on Principles of Pro-
gramming Languages, January 1982.

Martin Elsman and Niels Hallenberg. An optimizing backend for
the ML Kit using a stack of regions. Student Project, July 1995.

Martin Elsman. Polymorphic equality — no tags required. In
Second International Workshop on Types in Compilation, March
1998.

Emden Gansner and John Reppy (eds.). The Standard ML Basis
Library reference manual. In preparation.

Robert Harper and Mark Lillibridge. A type-theoretic approach
to higher-order modules with sharing. In 21st ACM Symposium
on Principles of Programming Languages, January 1994.

Robert Harper and Chris Stone. An interpretation of Standard
ML in type theory. Technical report, Carnegie Mellon University,
June 1997. CMU-CS-97-147.

Mark P. Jones. From hindley-milner types to first-class struc-
tures. In Proceedings of the 1995 Haskell Workshop, La
Jolla, California, June 1995. Yale University Research Report
YALEU/DCS/RR-1075.

BIBLIOGRAPHY 213

[Kah93]

[Ler92]

[Ler94]

[Ler95]

[Ler96]

[Mac92]

[Mil78]

[MP83]

[MT1]

[MT94]

[MTH90]

Stefan Kahrs. Mistakes and ambiguities in the definition of Stan-
dard ML. Technical report, University of Edinburgh, Laboratory
for Foundations of Computer Science, April 1993. There is an
Addenda for this paper, written June 94.

Xavier Leroy. Polymorphic Typing of an Algorithmic Language.
PhD thesis, INRIA, October 1992.

Xavier Leroy. Manifest types, modules, and separate compila-
tion. In 21st ACM Symposium on Principles of Programming
Languages, pages 109-122, 1994.

Xavier Leroy. Applicative functors and fully transparent higher-
order modules. In 22nd ACM Symposium on Principles of Pro-
gramming Languages, pages 142-153, 1995.

Xavier Leroy. A syntactic theory of type generativity and shar-
ing. Journal of Functional Programming, 6(5):667-698, 1996.

David MacQueen. Reflections on Standard ML. In Programminyg,
Concurrency, Simulation and Automated Reasoning, pages 32—
46. Springer-Verlag, LNCS 693, 1992.

Robin Milner. A theory of type polymorphism in programming
languages. In Journal of Computer and System Sciences, pages
17:348-375, 1978.

J.C. Mitchell and G.D. Plotkin. Abstract types have existential
types. ACM Trans. on Programming Languages and Systems,
10(3):470-502, 1988. Preliminary version appeared in Proc. 12th
ACM Symp. on Principles of Programming Languages, 1985.

Robin Milner and Mads Tofte. Commentary on Standard ML.
MIT Press, 1991.

David MacQueen and Mads Tofte. A semantics for higher-order
functors. In Fifth European Symposium on Programming, pages
409-423. Springer-Verlag, April 1994.

Robin Milner, Mads Tofte, and Robert Harper. The Definition
of Standard ML. MIT Press, 1990.

214

BIBLIOGRAPHY

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David Mac-

[Rus98|

[SA93]

[Sha97]

[SW95]

[Tar96]

[TB6]

[TB9S]

[TBE*97]

Queen. The Definition of Standard ML (Revised). MIT Press,
1997.

Claudio V. Russo. Types for Modules. PhD thesis, University of
Edinburgh, June 1998.

Zhong Shao and Andrew Appel. Smartest recompilation. In
20th ACM Symposium on Principles of Programming Languages,
January 1993.

Zhong Shao. Typed cross-module compilation. Technical report,
Department of Computer Science, Yale University, July 1997.
YALEU/DCS/TR-1126.

Manuel Serrano and Pierre Weis. Bigloo: a portable and optimiz-
ing compiler for strict functional languages. In Second Interna-
tional Symposium on Static Analysis, pages 366-381, September
1995.

David Tarditi. Design and Implementation of Code Optimiza-
tions for a Type-Directed Compiler for Standard ML. PhD the-
sis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, December 1996.

Mads Tofte and Lars Birkedal. Unification and polymorphism in
region inference. Accepted for the Milner Festschrift (25 pages),
1996.

Mads Tofte and Lars Birkedal. A region inference algo-
rithm. Transactions on Programming Languages and Systems
(TOPLAS) (Accepted), November 1998.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Hgjfeld Olesen, Peter Sestoft, and Peter Bertelsen. Pro-
gramming with regions in the ML Kit. Technical report, De-
partment of Computer Science, University of Copenhagen, April
1997.

BIBLIOGRAPHY 215

[TBE198]

[Tic86]

[TMC*96]

[Tof88]

[TT94]

[TT97]

[Vejo4]

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Hgjfeld Olesen, Peter Sestoft, and Peter Bertelsen. Pro-
gramming with regions in the ML Kit (for version 3). Technical
report, Department of Computer Science, University of Copen-
hagen, December 1998.

Walter Tichy. Smart recompilation. In ACM Transactions on
Programming Languages and Systems, pages 273-291, July 1986.

David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert
Harper, and Peter Lee. TIL: A type-directed optimizing compiler
for ML. In SIGPLAN Conference on Programming Language
Design and Implementation, 1996.

Mads Tofte. Operational Semantics and Polymorphic Type In-
ference. PhD thesis, University of Edinburgh, Department of
Computer Science, May 1988.

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed
call-by-value A-calculus using a stack of regions. In 21st ACM
Symposium on Principles of Programming Languages, January
1994.

Mads Tofte and Jean-Pierre Talpin. Region-based memory man-
agement. Information and Computation, 132(2):109-176, 1997.

Magnus Vejlstrup. Multiplicity inference. Master’s thesis,
Department of Computer Science, University of Copenhagen,
September 1994.

