
A Brief Introduction to Regions

Mads Tofte

�

UC Berkeley

Computer Science Division

Abstract

The paper gives an overview of region-based memory man-

agement. The emphasis of the paper is on the dynamic

aspects of execution, speci�cally memory management. We

illustrate how three static program analyses can be used for

inferring memory management directives. They are region

inference, physical size inference, and storage mode analysis.

We describe these analyses for a skeletal language inspired

by Standard ML. We also describe a region-based runtime

system for the skeletal language, based on the runtime sys-

tem of the ML Kit with Regions.

1 Introduction

Memory management is an essential aspect of computer pro-

gramming. Simply put, the problem is that computers have

�nite memory and that some re-cycling of memory is nec-

essary. A program that consistently allocates more memory

than it releases will eventually use up all the memory of the

computer. A program that de-allocates memory too early

(i.e., when the memory contains values that are actually re-

quired by the remainder of the computation) may crash or

give wrong results.

Most programming languages provide the programmer

with a memory management discipline, which helps the user

manage memory, in return for imposing restrictions on how

memory may be used.

Indeed, memory management considerations have often

played a central role in the design of programming lan-

guages. One famous example is the programming language

Algol 60[Nau63], which introduced what we will call the pure

stack discipline. In the pure stack discipline the runtime

stack can hold all values produced by the computation, in-

cluding temporary variables, non-local variables, return ad-

dresses, and even certain variable-sized arrays. (The term

pure refers to the idea that all values can be stored on the

stack.) The beauty of the pure stack discipline is that every

point of allocation is paired with a point of de-allocation

and these points are easily identi�ed from the program text.

�

On sabbatical leave from University of Copenhagen

r

0

r

1

r

2

r

3

: : :

Figure 1: The store is a stack of regions; a region is a box

in the picture. Four region names are shown: r

0

, r

1

, r

2

, and

r

3

.

This gives predictability in programming and, when prop-

erly used, very space economical memory use.

The pure stack discipline has severe limitations, how-

ever. One limitation concerns physical sizes of values. The

physical size of a value must be known at the latest when

memory allocation for the value takes place at runtime. This

rules out lists and other recursive datatypes, which are nor-

mally constructed incrementally. Also, the use of the stack

for holding the environment rules out useful programming

techniques, especially returning functions from function calls

(under call-by-value). In particular, if we regard an object in

object-oriented programming as containing functions (meth-

ods), then methods cannot in general return objects as re-

sults under the pure stack discipline.

Many programming languages get around these limita-

tions by using a less pure stack discipline, where the values

that cannot be put on the stack are stored in a heap. Re-

cycling of memory is then done either explicitly by the pro-

grammer or automatically, by the garbage collector, which is

a separate routine in the runtime system. Explicit manage-

ment of memory is notoriously di�cult and time consuming

for the programmer. Garbage collection has been developed

over a period of some forty years (see Wilson[Wil92] for an

excellent overview). Thanks to this work, garbage collection

has matured to be a practical form of memory management.

However, garbage collection does not o�er the same level

of predictability as the stack discipline. The separation of



allocation and de-allocation makes it di�cult to know how

much memory a program uses. Typically, programmers re-

sort to simply running the program on di�erent input values

to see what happens. It is di�cult for a programmer who

has no way of asserting or checking lifetimes of values to

avoid that the garbage collector hangs on to values which

are actually not needed.

Region-based memory management [TT94, BTV96, TT97]

o�ers an alternative to the above memory management dis-

ciplines. At runtime, all values are stored in a so-called

stack of regions, see Figure 1. All values that do not �t in

one machine word are stored in regions. Such values include

function closures and values of recursive types, such as lists

and trees. Every region can grow dynamically and there is

no �xed bound on the number of regions that can exist at

runtime.

The size of a region can sometimes, but not always, be

inferred at compile time.

The allocation and de-allocation of regions is determined

at compile time, by a type-based analysis called region in-

ference.

Region inference annotates every value-creating expres-

sion of the source program with an annotation of the form

at �

where � is a region variable. Note the distinction between

region and region variable. A region is an area of memory

at runtime. A region variable is a syntactic object in the

program, so a program contains only �nitely many region

variables. At runtime, an environment maps region vari-

ables to so-called region names, where a regio name uniquely

identi�es a region.

Region inference also introduces bindings of region vari-

ables. One form of binding is the expression

letregion � in e end

which binds � in the expression e. At runtime, �rst a re-

gion is allocated at the top of the region stack, then e

is evaluated (presumably storing and fetching values from

the region) and �nally, when end is reached, the region is

popped o� the stack. The expression e may itself contain

further letregion expressions or call functions that contain

letregion expressions. However, the letregion construct

is the only primitive for allocating and de-allocating regions,

from which it follows that regions obey a stack discipline.

The second form of binding of region variables takes the

form

letrec f[�

1

,: : :,�

k

](x) at � = e

1

in e

2

end (1)

Here f is a (possibly recursive) function with formal pa-

rameter x, body e

1

and scope e

1

and e

2

. The region vari-

ables �

1

; : : : ; �

k

are called the formal region parameters of

f . Intuitively, they indicate where f should place the values

it produces | so e

1

may contain annotations of the form

at �

i

, i 2 f1; : : : ; kg, among others. The scope of the bind-

ing �

1

; : : : ; �

k

is e

1

. The region variable � indicates where

the closure for f is to be placed, in case f has free variables.

A function declared with the above letrec construct is

said to be region-polymorphic. Every non-binding occur-

rence of f takes the form

f[�

0

1

,: : :,�

0

k

] at �

0

where �

0

1

; : : : ; �

0

k

are actual region parameters. The notation

[�

0

1

,: : :,�

0

k

] at �

0

indicates that a record for holding the re-

gion parameters is created and stored in the region denoted

by �

0

.

Di�erent non-binding occurrences of f may use di�erent

actual region parameters. Indeed, region inference allows

polymorphic recursion in regions, that is, referring to (1), in-

side e

1

, f may be applied to actual region parameters which

are di�erent from the formal region parameters �

1

; : : : ; �

k

.

Region-based memory management has been implemented

in The ML Kit with Regions[TBE

+

97], a compiler for Stan-

dard ML which uses regions as its sole form of memory man-

agement. The work described in this paper was mostly done

at DIKU with the ML Kit group, and contains contribu-

tions due to Lars Birkedal, Martin Elsman, Niels Hallenberg,

Tommy H�jfeld Olesen, Magnus Vejlstrup, and Jean-Pierre

Talpin in addition to those of the author.

2 Source Language

In this section we de�ne the source language and present a

sample program, which we use as a running example.

The syntactic categories of the source language are inte-

ger constants, ranged over by i, constants, ranged over by c,

variables, ranged over by f and x, binary operators, ranged

over by bop, expressions, ranged over by e, and patterns,

ranged over by pat.

The grammar for the language is:

c ::= nil j true j false j i

bop ::= + j - j = j > j : : :

e ::= c j x j e bop e

j let pat=e in e end

j (e,e) j e::e j �x:e

j case e of pat=>e | pat=>e

j letrec f(x)=e in e end

pat ::= c j x j (x,x) j x::x

Although this language may appear to be a high-level lan-

guage, it is in fact designed with memory management in

mind. Every constant is assumed to �t into one memory

word or one register. (We do not treat constants of di�erent

sizes in this paper.) Every binary operators is assumed to

correspond to a machine operation which can be carried out

using registers alone, without allocation of memory.

The construct let pat=e

1

in e

2

end binds the variables

that occur in pat with scope e

2

. It does not cause allocation

of memory (beyond allocation done by e

1

and e

2

, of course).

The three constructs in the next line all allocate memory.

The expression (e

1

,e

2

) evaluates e

1

and e

2

to values v

1

and

v

2

, respectively, and then stores the pair (v

1

; v

2

) in memory.

For brevity, we write fst e for

let (x,y) = e in x end

and snd e for

let (x,y) = e in y end

The expression e

1

::e

2

evaluates e

1

and e

2

to values v

1

and v

2

, respectively, and then stores a list cell with head v

1

and tail v

2

in memory. In fact, a list cell is also just a pair

(v

1

; v

2

); the reason we treat lists and pairs di�erently in the

source language is that region inference for pairs is di�erent

for region inference for lists.

The expression �x:e creates a function closure in mem-

ory. The closure is a triple hx; e;Ei, where E is an envi-

ronment mapping the free variables of �x:e to values. Like

Standard ML, our language uses static scoping.



letrec mk(n) = if n=0 then nil else n::mk(n-1)

in letrec app(p)=

let (xs,ys) = p

in case xs of

nil => ys

| x::xs' => x::app(xs',ys)

end

in letrec len(q)=

let (l,acc)=q

in case l of

nil=>q

| y::zs => len(zs,acc+1)

end

in

snd(len(app(mk 5000, mk 5000),0))

end

end

end

Figure 2: A source program.

The expression case e of pat=>e | pat=>e evaluated e

to a value and then branches to the �rst or the second

branch. For brevity, we write

if e

1

then e

2

else e

3

for

case e

1

of true => e

2

| false => e

3

In letrec f(x)=e

1

in e

2

end, f is the name of a (pos-

sibly recursive) function with formal parameter x and body

e

1

. The scope of the declaration is e

1

and e

2

.

Figure 2 shows a sample source program, which we shall

use as a running example. mk(n) creates a list of length n;

app(l

1

, l

2

) appends lists l

1

and l

2

; len(l,n) computes the

length of the list l using n as an accumulating parameter.

The \main" program creates two lists, appends them, and

computes the length of the resulting list.

3 Region-Annotated Terms

The result of region inference is a region-annotated term.

We add two new syntactic categories, allocation points, ranged

over by a, and binding points, ranged over by b. We assume

a denumerably in�nite set RegVar of region variables; we use

� to range over region variables. The grammar for region-

annotated terms is:

a ::= at �

b ::= �

c ::= nil j true j false j i

bop ::= + j - j = j > j : : :

e ::= c j x j e bop e

j let pat=e in e end

j (e,e)a j (e::e)a j (�x:e)a

j case e of pat=>e | pat=>e

j letrec f[b

1

,: : :,b

k

](x)a=e in e end

j f[a

1

,: : :,a

k

]a

0

j letregion b

1

,: : :,b

k

in e end

pat ::= c j x j (x,x) j x::x

Creating a pair, a list cell or a closure requires allocation of

memory.

1

Hence the allocation points on (e,e)a, (e::e)a,

and (�x:e)a.

Next, consider an expression of the form

letrec f[�

1

,: : :,�

k

](x)a=e in e end

If f has free variables, a closure for f has to be stored;

the allocation point a indicates where to put this closure.

(We omit the allocation point when f has no free variables.)

Next, �

1

, : : :, �

k

are the formal region parameters of f ; they

indicate where f should put the values it creates.

An expression of the form

f[at �

0

1

,: : :, at �

0

k

]a

0

applies f to actual region parameters �

0

1

, : : :, �

0

k

. Di�erent

applications of the same f may use di�erent actual region

parameters. We say that f is region-polymorphic. The ac-

tual region parameters are passed to f in a record of size

k words which is stored in the region indicated by a

0

. For

brevity, we write f[�

0

1

,: : :,�

0

k

]a

0

for

f[at �

0

1

,: : :, at �

0

k

]a

0

Furthermore, we write hf [a

1

; : : : a

k

]ei as a shorthand for

letregion � in f[a

1

; : : : ; a

k

] at � e end

where � can be any region variable which occurs free neither

in a

1

; : : : ; a

k

nor in e.

Region inference transforms source programs to region-

annotated terms. The region-annotated term is identical to

the source program, except that the former contains allo-

cation points and binding points. In other words, all the

evaluation steps are precisely as in the source program, but

memory allocation and de-allocation have been made ex-

plicit.

Figure 3 shows a region-annotated version of the source

program from Figure 2. We now explain the main features of

region-annotation by way of the example. Starting from the

bottom, notice that the two applications of mk use di�erent

region parameters: the �rst uses �

9

and the second uses �

10

.

This is an example of region polymorphism. In this case the

two calls of mk create two lists in di�erent regions.

Region inference requires that all elements of a list be

in the same region. Thus all the elements of the �rst list

are in �

9

and all the elements of the second list are in �

10

.

However, di�erent lists may reside in di�erent regions.

The app function repeatedly conses the elements of the

�rst list onto the second list. Thus the actual region argu-

ment to app is the region of the second list, �

10

.

After the application of app, the �rst list and the pair of

the two lists are garbage! Thus region inference has intro-

duced a letregion on �

9

and �

11

around the application.

How can region inference deduce that the �rst list and

the pair are garbage? Well, it infers two pieces of static

information for the application, namely

1. a region-annotated type, in this case (int list, �

10

);

and

2. an e�ect, in this case set f�

9

; �

10

; �

11

g.

1

For simplicity, we allocate all pairs and closures although in prac-

tice, this is not necessary.



letrec mk[�

2

](n) =

if n=0 then nil else (n::hmk[�

2

](n-1)i)at�

2

in letrec app[�

4

](p) =

let (xs,ys) = p

in case xs of

nil => ys

| x::xs' =>

(x::letregion �

6

in happ[�

4

](xs',ys)at�

6

i

end)at�

4

end

in letrec len[�

8

](q)=

let (l,acc)=q

in case l of

nil=>q

| y::zs => hlen[�

8

](zs,acc+1)at�

8

i

end

in

letregion �

10

, �

12

in

snd(hlen[�

12

]

letregion �

9

, �

11

in (happ[�

10

](hmk[�

9

] 5000i,

hmk[�

10

] 5000i)at�

11

end, 0)at�

12

i)

end

end

end

end

Figure 3: When applied to the source program in Figure 2,

region inference produces the above region-annotated term.

In general, the region-annotated type of an expression is very

much like the ML type of an expression, except that every

type has been annotated with a region variable (indicating

where the value lies).

The e�ect of an expression is a �nite set of region variables.

2

It is an upper bound on the set of regions required by the

evaluation of the expression. There are two ways in which

an expression can \require" a region: either for accessing

a value stored in the region or for writing a value into the

region. The region inference system actually distinguishes

between the two kinds of uses and makes use of this distinc-

tion, for example, to reduce the number of region parameters

to region-polymorphic functions: only regions that are used

for storing values need be passed to a region-polymorphic

function. Such region parameters are called put parameters;

we show only put parameters in this paper.

In the example at hand, the application of app puts val-

ues into �

9

, �

10

, and �

11

.

To introduce the letregion, region inference employs

the following rule:

If a region variable occurs in the e�ect of an ex-

pression but does not occur in the type of the ex-

pression and does not occur free in the type en-

vironment, then that region variable denotes a

region whose use is purely local to the computa-

tion and which may therefore be discharged using

letregion.

Here a type environment is a map of program variables to

their region-annotated, region-polymorphic types. In the

concrete example, mk and app both have closed type schemes

(i.e., region-polymorphic types with no free type or region

variables) so only the region-annotated type and e�ect of the

expression itself matters. Since �

9

and �

11

are in the e�ect of

the expression but not in the type, they may be discharged

by a letregion. Note that �

10

cannot be discharged, since

it occurs in the type of the expression.

Similarly, the region-annotated type of the argument to

snd is ((int list; �

10

) � int; �

12

). The type of the result

of the projection is simply int, so �

10

and �

12

may be dis-

charged.

Now let us turn our attention to the auxiliary functions

mk, app, and len. In the body of mk, note that the recursive

call of mk uses the formal region parameter of mk as actual re-

gion parameter. Hence all list elements are pumped into the

same region, �

2

. A similar phenomenon is observed where

app calls itself, but notice that the region where the argu-

ment pair (xs',ys) is stored is popped after the recursive

call. The reason is a feature called polymorpic recursion.

If we did not only show put parameters, app would have

one more region parameter, �

3

, say, which indicates where

the argument p lies. When app calls itself recursively, it

may instantiate �

3

to a di�erent region variable, in this case

�

6

. The result of the recursive call has type (int list; �

4

)

and the recursive call has e�ect f�

4

; �

6

g, so �

6

may be dis-

charged.

Polymorphic recursion works for put regions too: a func-

tion can call itself using regions which are local to its body.

This resembles the well-known concept of activation record

for recursive functions, where each recursive call has its own

activation record. With regions, however, the data that is

local to an invocation may include, for example, regions that

contain lists or binary trees.

Finally consider len. The interesting thing about len

is that it is tail recursive. The function is written with

2

This is a simpli�cation; for the full story, see [TT97].



care to force the argument pair of the recursive call (that

is, (zs, acc+1) into the same region as the argument pair,

q. At �rst, this may seem silly, since it would appear that

these argument pairs will pile up in �

8

. However, the stor-

age mode analysis described in the next section will ensure

that the same two words are used for storing all the di�er-

ent argument pairs: the region will be \reset" before each

iteration.

The way we force the argument pairs into the same region

is by returning q in the �rst branch of the case statement.

The two branches must have the same result type. Therefore

q and the result of the tail call of len must have the same

type. In other words, len must return its result in the same

region as it receives its argument.

Were we to return acc instead of q in the �rst branch,

this constraint would disappear, and polymorphic recursion

would place the pair (zs, acc+1) in a local region:

letregion �

9

in hlen[](zs,acc+1)at�

9

i end

This would be unfortunate, since the function would no

longer be tail recursive. Indeed, the argument pairs would

pile up on the stack and upon each return, the function

would have to de-allocate two words on the stack.

4 Adding Storage Modes and Physical Sizes

As the example in the previous section illustrated, one has

to do something more than just region inference for tail re-

cursive functions. On closer inspection, tail recursion is just

a special case of a more fundamental problem with region

inference, namely that there are many computations where

lifetimes simply are not nested! In the case of tail recursion,

one has a sequence of pairs whose lifetimes do not overlap.

In such cases, the obvious solution is to reset the region be-

fore each new store, that is, pre�x a store operation with

operations which reset the allocation pointer of the region

to the beginning of the region. The net e�ect is that the

region will be updated destructively, using the region as a

traditional updatable store.

To express this in our language, we change the de�nition

of allocation points to

a ::= attop � j atbot � j sat �

Here attop �means \store the value at the top of the region,

extending the size of the region", atbot � means \reset the

region, then store the value", and sat � means \store the

value somewhere in �". The last storage mode is used when

� is a formal region parameter to a region-polymorphic func-

tion. In this case, the actual storage mode is passed to the

function at runtime, and the code for sat � tests whether

the actual runtime is attop or atbot and performs the store

accordingly.

A second important optimization is to distinguish be-

tween �nite and in�nite regions. Finite regions are allocated

on the stack, while in�nite regions are allocated using a more

expensive scheme, described in Section 5.

This optimization turns out to be surprisingly e�ective.

In many programs, over 95% of the allocations are done on

the stack, resulting in a three-fold speed-up [BTV96]. In-

deed, with �nite regions, the analogy with activation records

becomes even more appealing: �nite regions are stored as

\temporary" data which is local to each function invocation.

Even in�nite regions �t the traditional stack-discipline, see

Section 5.

letrec mk[�

2

:1](n) =

if n=0 then nil else (n::hmk[sat �

2

](n-1)i)attop�

2

in letrec app[�

4

: 1](p) =

let (xs,ys) = p

in case xs of

nil => ys

| x::xs' =>

(x::letregion �

6

: 2

in happ[sat �

4

](xs',ys)atbot�

6

i

end)attop�

4

end

in letrec len[�

8

: 1](q)=

let (l,acc)=q

in case l of

nil=>q

| y::zs => hlen[sat �

8

](zs,acc+1)sat�

8

i

end

in

letregion �

10

:1, �

12

:1

in

snd(hlen[atbot �

12

]

letregion �

9

:1, �

11

: 2

in (happ[atbot �

10

](hmk[atbot �

9

] 5000i,

hmk[atbot �

10

] 5000i

)atbot �

11

end, 0)atbot �

12

i)

end

end

end

end

Figure 4: When applied to the program in Figure 3, storage

mode analysis and physical size inference produce the above

term.

To express the results of region size inference, we intro-

duce the notion of a region size, s, which is either a non-

negative integer, or in�nity:

s ::= i j 1

Here i is physical size (in 32 bit words) and 1 denotes an

\in�nite" region (i.e., a region for which no �nite bound

is found at compile-time). We then replace our previous

de�nition of binding points by:

b ::= � : s

that is, every binding occurrence of a region variable is an-

notated by a physical size. If the binding point is part of a

formal parameter list of a region-polymorphic function

letrec f[� : s; : : :](x)a=e

1

in e

2

end

then s indicates the size of memory which f allocates into

�, including calls to other functions or to f itself. If the

binding point is part of a letregion expression

letregion � : s; : : : in e end

then s indicates the size of region �.

The grammar for expressions is the same as before, with

the revised reading of a and b, of course.

Figure 4 shows the result of performing storage mode

analysis and physical size inference on the program from

Figure 3.



We explain the main features of these two analyses by

way of the example. First consider the body of app. The

region �

6

is �nite: it is represented by 2 words on the stack.

The pair is stored atbot, which for a stack-allocated region

means the same as attop, namely store the value into the

stack a the point pointed to by the region variable (�

6

).

The binding point of �

4

says that app puts an unbounded

number of values into �

4

, which is correct, since the number

depends on the length of the �rst argument to app. The

recursive call app[sat �

4

](xs',ys)atbot�

6

passes �

4

with

storage mode sat, since app has not created a value in �

4

which needs to be kept alive across the application. The list

(x:: ���) is stored into �

4

attop, because the result of the

recursive call must not be overwritten.

Proceeding to the declaration of len, we see that both

storage modes for �

8

are sat. That is because the call is a

tail call and therefore there is no value locally live within

len to protect. Note that at the point where len is applied

to the actual region �

12

, the storage mode is atbot, (since

the pair is not live in the main expression after the call), so

len will use atbot in all its iterations.

All the storage modes in the main part of the program are

atbot. One might wonder why �

12

has physical size1, when

in fact it will never contain more than two words. The reason

is that the physical size inference is based on counting how

many stores there are in the region; for simplicity, the size

inference analysis never decreases the size it associates with

a region (if it did, the analysis might become more precise,

but termination of the analysis would become a concern).

Since there are potentially in�nitely many stores into �

12

,

the region is classi�ed as in�nite.

5 The Abstract Machine

We now present an abstract machine which is a suitable in-

termediate form for code generation. Indeed the machine we

present here is an extract of the Kit Abstract Machine[BTV96],

which the ML Kit uses as an intermediate language on its

way to C or HP PA-RISC code.

The abstract machine has 32-bit registers, a runtime

stack, and a region heap. The region heap consists of a set of

�xed-size region pages. A �nite region is represented simply

as a �nite number of 32-bit words on the stack. An in�nite

region is represented by a region descriptor on the stack, to-

gether with a linked list of region pages in the region heap.

A region descriptor is a triple which consists of a pointer

to the �rst region page, a pointer to the last region, and

a number indicating the remaining space in the last region

page of the region.

Finally, the machine has a free list of region pages. When-

ever an in�nite region needs to grow, the runtime system

extends it with a page from the free list; de-allocation of an

in�nite region is fast: simply append the region to the free

list using a few pointer operations. Allocating an in�nite

region is done by pushing a region descriptor onto the stack

and letting it point to a single region page taken o� the free

list.

The machine reserves certain registers for dedicated use.

They are:

� sp, the stack pointer register, which points to the top-

most word of the stack;

� fn, the function pointer register, which points to the

closure of the function whose body is currently being

evaluated;

� varg, the value argument register, through which all

function value arguments are passed.

� rarg, the region argument register, through which all

actual region arguments are passed;

� ret, the return register, through which all return val-

ues from function calls are passed;

We use r to range over the registers.

In addition, we assume an in�nite set of temporary vari-

ables. We use t to range over temporary variables. A tem-

porary variable can hold any word-size object. By a variable

we understand a register or a temporary variable. We use x

to range over variables. Variables can be updated destruc-

tively.

A variable con contain either a constant, a region name,

or a pointer to a stored value. A region name is a pointer

to a place in the stack. If the region is �nite, the region

name points to the beginning of the region; if the region

is in�nite, the region name points to the region descriptor.

In both cases, the two least signi�cant bits of the region

name are used for special purposes. One bit, the attbot bit,

is set when one wants to represent the storage mode atbot.

The other bit, the in�nity bit, is set when the region is an

in�nite region. The concept of passing a region to a region-

polymorphic functions is realised by setting or clearing the

two bits in the region name of the region and then passing

the region name. We use rn to range over region names.

Further, the machine has a set of code labels, ranged over

by l and the same set of constants as the previous languages

in this paper.

In examples we write concrete temporary variables and

labels in this font.

The syntactic categories of the abstract machine lan-

guage are: variables, ranged over by x, e�ective addresses,

ranged over by ea, boolean expressions, ranged over by boolexp,

arithmetic operators, ranged over by aop, statements, ranged

over by stmt, functions, ranged over by fun, and programs,

ranged over by p.

The grammar for the abstract machine language appears

in Figure 5. Useful abbreviations are shown in Figure 6.

We now describe the operations of the machine. The

boolean expressions include the usual comparisons, which

are always on word-sized objects. In infinite(x), x is sup-

posed to hold a region name; the predicate is true i� the in-

i�nity bit of the region name is set. Similarly, atbotbit(x)

tests the atbot bit of x.

The statement x:=ea stores the value of ea in x. In

x

1

:=x

2

[i], x

2

is supposed to hold a memory address, say

a; the statement stores the contents of the word with ad-

dress a + i in x

1

. In x

1

[i]:=ea, x

1

is supposed to hold a

memory address, say a; the statement stores the value of ea

in memory at address a + i.

The statement x:= pushregion() pushes a region de-

scriptor for an in�nite region onto the stack, storing the

address of the region descriptor in x. Allocation of a �-

nite region is done using the x:= allocs(i) abbreviation in

Figure 6.

In x

1

:= allocm(x

2

,i), x

2

is supposed to hold the name

of an in�nite region, say rn. The statement allocates a

record of i words of memory from the region whose name is

rn and stores a pointer to this record in x

1

.

The statement popregionpops the topmost region, which

must be an in�nite region, o� the runtime stack. Popping

a �nite region o� the runtime stack is done by the pop(i)

abbreviation in Figure 6.



x ::= r j t

ea ::= c j l j x

boolexp ::= ea=ea j ea>ea j : : :

j infinite(x) j atbotbit(x)

aop ::= + j - j : : :

stmt ::= x:=ea j x:=x[i] j x[i]:=ea

j x:=ea aop ea

j if boolexp then stmt else stmt

j x:= pushregion()

j x:= allocm(x,i)

j popregion

j setbotbit(x) j clearbotbit(x)

j setinfbit(x) j clearinfbit(x)

j resetregion(x)

j skip j jmp(ea)

j l:stmt

j fhtemp t

1

,: : :,t

n

;i stmtg

j stmt;stmt

fun ::= fun l is stmt

p ::= fun hpi

Figure 5: The grammar for the abstract machine

push(ea) � fsp:=sp+1; sp[0]:=eag

x:= allocs(i) � fx:= sp; sp:= sp+ig

x:= popto() � fx:=sp[0]; sp:= sp-1g

pop(i) � sp:= sp-i

return � ftemp t; t:=popto(); jmp(t)g

Figure 6: Abbreviations

fun mk is

if varg=0 then nil

else f

ftemp t1, t2, t3;

t1:= varg-1; n-1

t2:= allocs(1); region for [sat �

0

]

t3:= rarg[0]; access �

2

;

t2[0]:= t3; store [sat �

2

]

push(varg) save before call

push(rarg) save before call

push(lab1) save return address

varg:= t1;

rarg:= t2;

jmp mkg; non-tail call

lab1:ftemp t1, t2;

pop(rarg); restore

pop(varg); restore

pop(1); end of letregion

t1:=rarg[0]; access �

2

t2:= allocm(t1,2); allocate pair

t2[0]:= varg; store (n,

t2[1]:= ret; h���i)

ret:= t2; store return value

returng

g

Figure 7: Machine code for the mk function of Figure 4.

In setbotbit(x), x is supposed to hold a region name;

the statement destructively sets the atbot bit of x. Similarly

for clearbotbit(x), setinfbit(x), and clearinfbit(x).

In resetregion(x), x is supposed to hold the name of an

in�nite region, say rn. The statement frees all region pages

of the region, except the �rst, and records in the region

descriptor that the page is empty.

The statement skip does nothing while jmp(ea) jumps

to the value of ea which is supposed to be a label.

The statement l:stmt is a labelled statement, typically

a point of return from a function call.

The statement fhtemp t

1

,: : :,t

n

;i stmtg is called a block.

Here t

1

, : : :, t

n

are temporary variables with scope stmt.

Angle brackets (h i) enclose optional phrase parts. Thus a

block can also simply be used for parenthesizing statements.

Finally, a program is a sequence of function declarations.

Figure 7 shows abstract machine code that implements

the mk function of Figure 4. The code is as elegant as one

could hope for, except for the extra stack operations involved

in creating the (singleton) region vector [sat �

2

]. First of

all, boxing a record with one element is a bit excessive. But

one can do better: when a region-polymorphic function f

calls itself using precisely the formal region parameters of

f as actual region parameters and if all the actual region

parameters have storage mode sat, then the call can simply

re-use rarg without any change! The ML Kit contains this

optimization. This is seen in the code len, see Figure 8.

6 Region Pro�ling

The ML Kit contains a region pro�ler, which makes it pos-

sible pro�le runtime space usage.

Figure 9 shows a region pro�le for our example program.

The pro�le has time along the x-axis and memory use along

the y-axis. The di�erent shades represent di�erent regions;



fun len is

ftemp l, acc;

l:= varg[0]; access l

acc:=varg[1]; access acc

if l=nil then fret:= varg; returng

else ftemp y, zs, t1, rho8;

y:= l[0];

zs:= l[1];

t1:= acc+1;

rho8:= rarg[0];

if atbotbit(rho8) then resetregion(rho8)

else skip;

t2:= allocm(rho8,2);

t2[0]:= zs; store (zs,

t2[1]:= t1; acc+1)

varg:= t2;

jmp leng tail call

g

Figure 8: Machine code for the len function of Figure 4.

there is a shade for each letregion-bound region variable

in the program. These region variables are listed, each with

their shade, on the right. (The numbers di�er from the ones

in the previous sections.)

Each mark on the x-axis represent a point in time where

the pro�ler interrupted the program and traversed the mem-

ory. We see three hills, followed by a plateau. The �rst hill

is from the call mk[atbot �

9

] 5000. During the �rst climb

(till approximately 0.08 seconds) the stack grows, together

with r101561, which is �nite region which surrounds the

recursive call of mk. The period from 0.08 seconds to 0.18

seconds consists of stack pops combined with list cell con-

structions in regions r101656 and r101657. The version of

the Kit used for these measurements represents lists using

two regions: one for the spine of the list and one for the

pairs to which :: is applied; thus the lists take up twice as

much space: 5000 cells � 4 words/cell � 4 bytes/word '

80Kb. The two regions r101656 and r101657 correspond to

�

9

. Note that they stay alive till the plateau is reached.

The second and third tops are similar. The plateau rep-

resents the time when len is working. As predicted, len

runs in constant space.

7 Conclusion

Region inference and the other static analyses presented in

this paper make it possible to use classical stack-based im-

plementation techniques for languages which are beyond the

scope of the pure stack discipline.

As in the pure stack discipline, allocation points and

de-allocation points are paired, and they are determined

at compile time. Note, however, that allocation and de-

allocation are not determined by syntax, as is normal in

block-structured languages, but by static analyses. The

programming style one has to adopt to make best use of

the region stack resembles programming styles known from

block-structured languages, however.

A particularly pleasing aspect of the techniques presented

in this paper is that the elementary memory management

operations are spread out over the computation and more-

over, they each take constant time! The absence of inter-

ruptions of unbounded duration is clearly attractive for real-

time programming.

There is no claim that region-based memory manage-

ment removes the need for traditional runtime garbage col-

lection techniques. The claim is that, at least as ML-like lan-

guages are concerned, the need for reference tracing garbage

collection can be greatly decreased and in many cases elim-

inated altogether.

8 Further Reading

Region inference builds on previous work on e�ect systems,

see [TJ92, DKGS87, JG91].

The home page for the ML Kit project is:

http://www.diku.dk/research-groups/

topps/activities/kit2/index.html

From the web page, one can access the most recent version

of the ML Kit, technical reports, and some of the published

papers.

The region inference rules are described in [TT94, TT97],

where it is also proved that the region inference rules are

sound, that is, that they prevent de-allocation of data which

is actually needed by the remainder of the computation.

These papers also contain measurements of object programs

produced by the ML Kit and comparisons with object pro-

grams produced by Standard ML of New Jersey.

For more information on storage mode analysis, physical

size inference, and other analyses performed by the ML Kit,

see [BTV96].

For an algorithm that performs region inference, see [TB98].

The article contains a proof that the algorithm is sound with

respect to the region inference rules.

Elsman and Hallenberg [EH95] describe the backend of

the KIT, including the Kit Abstract Machine, register allo-

cation, and runtime system.

Elsman [Els98] describes an analysis which eliminates

polymorphic equality in ML programs. This analysis, com-

bined with region inference, makes tagging of allocated ob-

jects unnecessary.

For advice on programming with regions in Standard

ML, consult [TBE

+

97].

References

[BTV96] Lars Birkedal, Mads Tofte, and Magnus Ve-

jlstrup. From region inference to von Neu-

mann machines via region representation infer-

ence. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT Symposium on Principles of Program-

ming Languages, pages 171{183. ACM Press,

January 1996.

[DKGS87] J. M. Lucassen D. K. Gi�ord, P. Jouvelot and

M.A. Sheldon. Fx-87 reference manual. Technical

Report MIT/LCS/TR-407, MIT Laboratory for

Computer Science, Sept 1987.

[EH95] Martin Elsman and Niels Hallenberg. An op-

timizing backend for the ML Kit using a stack

of regions. Student Project 95-7-8, Department

of Computer Science, University of Copenhagen

(DIKU), July 5 1995.

[Els98] Martin Elsman. Polymorphic equality - no tags

required. In Second International Workshop on

Types in Compilation, March 1998.



[JG91] P. Jouvelot and D.K. Gi�ord. Algebraic recon-

struction of types and e�ects. In Proceedings of

the 18th ACM Symposium on Principles of Pro-

gramming Languages (POPL), 1991.

[Nau63] Peter Naur. Revised report on the algorithmic

language Algol 60. Comm. ACM, 1:1{17, 1963.

[TB98] Mads Tofte and Lars Birkedal. A region infer-

ence algorithm. Transactions on Programming

Languages and Systems (TOPLAS), July 1998.

[TBE

+

97] Mads Tofte, Lars Birkedal, Martin Elsman,

, Niels Hallenberg, Tommy H�jfeld Olesen,

Peter Sestoft, and Peter Bertelsen. Pro-

gramming with regions in the ML Kit.

Technical Report DIKU-TR-97/12, Dept. of

Computer Science, University of Copenhagen,

1997. (http://www.diku.dk/research-groups/

topps/activities/kit2).

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. Poly-

morphic type, region and e�ect inference. Jour-

nal of Functional Programming, 2(3), 1992.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implement-

ing the call-by-value lambda-calculus using a

stack of regions. In Proceedings of the 21st ACM

SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 188{201. ACM

Press, January 1994.

[TT97] Mads Tofte and Jean-Pierre Talpin. Region-

based memory management. Information and

Computation, 132(2):109{176, 1997.

[Wil92] Paul R. Wilson. Uniprocessor garbage collec-

tion techniques. In Y. Bekkers and J. Co-

hen, editors, Memory Management, Proceedings,

International Workshop IWMM92, pages 1{42.

Springer-Verlag, September 1992.



ismm - Region profiling Fri Aug 14 06:59:59 1998

r101654fin

r101670fin

r101652inf

r101666fin

r101662fin

r101660fin

r5inf

rDesc

r4inf

r101603fin

r101608fin

r101561fin

r1inf

stack

r101656inf

r101657inf

r101650inf

r101651inf

seconds0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5

by
te

s

0k

50k

100k

150k

200k

250k

Maximum allocated bytes in regions: 247516.

Figure 9: A region pro�le for the example program.


